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Abstract

These are my QE notes made for my finals in 2022. They cover all of the topics. In my opinion
these notes miss out a fair amount of useful information. This is because I took econometrics and hence
focussed most of my revision there, just brushing up on the bits of QE that I needed for the exam.
For much more detail please check my micro- and macro- econometrics notes. Nonetheless feel free to
use these notes and pass them on to others. Please note, however, that these have just been made
by a student and not checked over. They likely contain errors, so it will be worth checking things for
yourself. Thanks to Kevin Sheppard, James Duffy and Vanessa Berenguer Rico - these notes are just my
interpretation of their lectures and tutorials.
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Probability & Statistics

Definitions

Probability Space
Denoted (Ω, A, P ) is a set Ω, a (nonempty) collection of subsets A, and a probability function (measure) P
defined on A.

Conditional probability
P (A | B) = P (A B)

P (B)

Total Probability Theorem
If {E(1), . . . , E(r)} is a partition of Ω such that P (E(i)) > 0 for all i, then,

P (A) =
r∑

i=1
P (AnE(i)) =

r∑
i=1

P (A | E(i))P (E(i))

• A partition is a collection of disjoint (mutually exclusive) events.
• An Example:

– There are two Urns (1) and (2)
– (1) has 3 white and 7 red balls, (2) has 6 white and 4 red balls
– Heads = take from (1), tails = take from (2)
– P(ball is white) = P(white n (1)) + P(white n (2))
– P(ball is white) = P(white | (1))P((1)) + P(white | (2))P((2))
– P(white) = 3/10 x ½ + 6/10 x ½ = 9/20

Bayes Theorem
This is very easily derivable from conditional probability.

P (A | B) = P (B | A)P (A)
P (B)

Probability Mass Function

fX(xi) = P (X = xi) ,
∑

i

P (X = xi) = 1

Cumulative Distribution Function

FX(xi) = P (X ≤ xi)

Probability Density Function

P (a ≤ X ≤ b) =
∫ b

−a

fX(y)dy ,

∫ ∞

−∞
fX(y)dy = 1

Cumulative Distribution Function

Fx(x) = P (X ≤ x) =
∫ x

−∞
fX(y)dy , −∞ ≤ x ≤ ∞
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Key Functions

Expected Value
E[X] =

...∑
i=1

xiP (X = xi) = ...

Expected Value is a measure of centrality, with the properties,

E[a + bX + cY ] = a + bE[X] + cE[Y ]

Variance

V ar[X] =
k∑

i=1
{xi − E[X]}2P (X = xi) = ...

V ar[X] = E[{X − E[X]}2] = E[X2] − E[X]2

The variance is a measure of dispersion, with the properties,

V ar[a + bX] = b2V ar[X]
V ar[Y + X] = V ar[Y ] + V ar[X] + 2Cov[Y, X]
V ar[Y − X] = V ar[Y ] + V ar[X] − 2Cov[Y, X]

V ar[
n∑

i=1
Xi] =

n∑
i=1

V ar[Xi] + 2
n−1∑
i=1

n∑
j=i+1

Cov[Xi, Xj ]

Covariance
Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[y]

With the properties,

Cov[aX + b, cW + dV ] = acCov[X, W ] + adCov[X, V ] + cCov[b, W ] + eCov[b, V ]
= acCov[X, W ] + adCov[X, V ]

Correlation Coefficient
Corr[X, Y ] = Cov[X, Y ]√

V ar[Y ]V ar[X]

Skewness
E[{X − E[X]

σ
}3]

Kurtosis
E[{X − E[X]

σ
}4]
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Key Distributions

Normal Distribution
X ∼ N(µ, σ2)

Standardising:
Z = X − µ

σ
∼ N(0, 1)

Calculating Probabilities:
Φ gives the standard normal CDF, while ϕ gives the standard normal PDF.

P (X ≤ x) = P (X − µ

σ
≤ x − µ

σ
) = P (Z ≤ x − µ

σ
) = Φ(x − µ

σ
)

P (Z ≤ c1) = Φ(c1)
P (Z ≥ c2) = 1 − Φ(c2)
P (c1 ≤ Z ≤ c2) = Φ(c2) − Φ(c1)

If X and Y are bivariate normal then Y and X are uncorrelated iff Y and X are independent.

Uniform Distribution
Density function:

fX(x) = 1
b − a

, for a < x < b

CDF:

FX(x) =


0 , −∞ < x < a
x−a
b−a , a ≤ x < b

1 , b ≤ x < ∞

Bernoulli
Probability mass function:

fX(x) = P (X = x) =


p , if x = 1
(1 − p) , if x = 0
0 , otherwise

CDF:

FX(x) = P (X ≤ x) =


0 , −∞ < x < 0
(1 − p) , 0 ≤ x < 1
1 , 1 ≤ x < ∞

Binomial
Probability mass function:

fX(x) = P (X = x) =
(

n
x

)
px(1 − p)n−x for x = 0, 1, 2, 3, ..., n

Moments:

• Expectation is just given by summing Bernoulli RV’s, hence

E[X] = np

• Variance is again the sum of Bernoulli RV’s, hence

V ar(X) = np(1 − p)
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Sample & Asymptotic Properties

Sample Properties

Xi ∼ iid(µ, σ2)

Sample Mean: X̄n = 1
n

∑n
i=1 Xi

• Expectation:

E[X̄n] = E[ 1
n

n∑
i=1

Xi] = 1
n

n∑
i=1

E[Xi] = µ

• Variance:

V ar(X̄n) = V ar( 1
n

n∑
i=1

Xi) = ( 1
n

)2[
n∑

i=1
V ar(Xi) + 2

n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj)] = 1
n2 nσ2 + 1

n2 0 = σ2

n

• Standard Error (Standard Deviation) and Estimated Standard Error (Standard Error):

s.d.(X̄n) = σ√
n

s.e.(X̄n) = σ̂n√
n

Sample Variance: V âr(X) = σ̂2
n = 1

n−1
∑n

i=1(Xi − X̄n)2

Sample Covariance: Côv(X, Y ) = 1
n−1

∑n
i=1(Xi − X̄n)(Yi − Ȳn)

Law of Large Numbers

Theorem (Law of Large Numbers by Chebyshev)

For i = 1, ..., n let xi be independent and identically distributed with finite mean, µ, and variance σ2. Then,
as n → ∞,

x̄n = 1
n

n∑
i=1

xi
P−→ µ

Central Limit Theorems

Theorem (Central Limit Theorem by Lindeberg-Levy)

For i = 1, ..., n let xi be independent and identically distributed with finite mean, µ, and variance σ2. Then,
as n → ∞, √

n(x̄n − µ)
σ

D−→ N(0, 1)

Point Estimation

An estimator is a function of a sample data to be drawn randomly from the population; it is a random
variable. For example the sample mean or sample variance.

An estimate is the numerical value of the estimator when a specific sample is drawn; it is non-random

9



Confidence Interval Estimation

We observe the sample mean X̄n, a CI gives all the values of µ that are supported by the data.

Having observed X̄n a 95% CI is given by all the possible µ’s that are supported by the data we have
collected,

95% CI : X̄n ± 1.96 × s.e.(X̄n) , where Xi ∼ iid(µ, σ2) , s.e.(X̄n) = σ̂n√
n

Interpretations

Interpretation (1): Interval Estimation, so it gives a measure of the uncertainty of the point estimate X̄n

(which values of µ are supported by the data).

Re-interpretation (1): A CI is the set of non-rejected null hypothesis.

Interpretation (2): If you were to conduct this experiment 100 times, in 95% of the corresponding samples
you will find that µ ∈ CI

Hypothesis Testing

Null and Alternative Hypotheses

H0 : µ = µ0 , H1 : µ < µ0

Test-statistic and Distribution

tn = X̄n − µ0

s.e.(X̄n)
∼ N(0, 1) [Under H0]

Where s.e.(X̄n) = σ̂n√
n

Decision Rule

• Type I Error: reject the null when it is true.

– We call type I error α, or the Significance level – i.e. 5% significant implies a 5% probability I will
reject the null when it is true.

• Type II Error: do not reject the null when the alternative is true

– We call the type II error β, and 1˘β = power of the test.

P-value

What is the probability under H0 of finding evidence against the null beyond the observed t-statistic?

p = P (tn < tobs
n | H0) = Φ(tobs

n )

• This is only true for the alternative hypothesis at the top, if the alternative hypothesis were that we
think the mean is greater than the value we are using, that is H1 : µ > µ0, then

p = P (tn > tobs
n | H0) = 1 − Φ(tobs

n )

• Also, this is only true for a one tailed test, if we were doing a two tailed test then

p = 2P (tn > |tobs
n | | H0) = 2(1 − P (tn < |tobs

n | | H0)) = 2(1 − Φ(|tobs
n |))
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One-tailed or Two-tailed?

One-tailed or Two-tailed?

• One sided is more powerful
• But with a one-sided test we miss the other side of the distribution, and therefore opportunity to reject

the null.
• Hence we should only use a one-tailed test if we have good reason to do so.

E.g. JTP: Job Training Programme

If wages fall then you don’t really care, You’ll only implement the scheme if wages rise significantly, hence
can ignore the bottom half of the distribution.

(If it is not a good programme, it doesn’t matter how not bad it is – if it’s bad then we don’t implement it,
regardless of the level of badness)

11



Bivariate Statistics

Hypothesis Testing if two means are equal,

E.g. Is mean pay the same for men and women?

H0 : µw = µm ⇔ µw − µm = 0
H1 : µw ̸= µm ⇔ µw − µm ̸= 0

tn = X̄w,n − X̄m,n − 0
s.e.(X̄w,n − X̄m,n)

= X̄w,n − X̄m,n√
σ̂2

w,n

n + σ̂2
m,n

n

This assumes that the two samples are independent.

Binomial Testing

Suppose X ∼ B(n, p). When n is large then X ∼ N(np, np(1 − p)). This is known as the binomial
approximation to the normal.

Test statistics:
Z = X − µ

σ
= X − np√

np(1 − p)

Or we could consider the mean number of success, rather than the total number, hence,

µ = p , σ =
√

p(1 − p)

µX̄ = p , σX̄ =
√

p(1 − p)
n

Hence,

Z = X̄ − µX̄

σX̄

= X̄ − p√
p(1−p)

n

12



Linear Regression

Causal, Population, and Sample Model

Causal Model Population Model Sample (OLS) Linear Regression
Y = β0 + β1X + u Y = b∗

0 + b∗
1X + e Yi = β̂0 + β̂1Xi + ûi

Where,
Y = dependent variable
X = independent variable
u collects everything else
relevant to the determination
of Y other than X.

With E[e] = 0 , E[Xe] = 0

The population linear regression
asks,
’what is the best linear predictor of
Y using only X?’

The answer to this question is given
by solving,
Min E[Y − (b0 + b1X)]2

FOCs,
0 = E[Y − b∗

0 − b∗
1X]

0 = E[Y − b∗
0 − b∗

1X]X

Solution,
b∗

1 = Cov(X,Y )
V ar(X)

b∗
0 = E[Y ] − b∗

1E[X]

With 1
n

∑n
i=1 ûi = 0 , 1

n

∑n
i=1 Xiûi = 0

(β̂0, β̂1) are found by solving,
(β̂0, β̂1) = argmin 1

n

∑n
i=1[Yi − β0 − β1X]2

Solution,
β̂1 = Côv(Y,X)

V âr =
∑n

i=1
(Yi−Ȳ )(Xi−X̄)∑n

i=1
(Xi−X̄)2

β̂0 = Ȳ − β̂1X̄

u is orthogonal to X iff
E[u] = 0 , E[Xu] = 0,
since this implies X and u
are uncorrelated.

Define the regression error e as,
e := Y − b∗

0 − b∗
1X

By the FOCs the error is orthogonal
to X.
E[e] = E[Y − b∗

0 − b∗
1X] = 0

E[Xe] = E[Y − b∗
0 − b∗

1X]X = 0

We say in this model e and X are
orthogonal by construction.

The linear regression function provides a
linear approximation of the conditional
mean

E[Y | X = x1] ≈ β̂0 + β̂1x1

When the conditional expectation function
(CEF) is linear the linear regression
function is the best approximation of it
simplicter

If the causal model u
satisfies OR then the
population model and causal
model coincide, hence OLS
estimates can be causally
interpreted.

Under OR the causal and population
models coincide.

The sample regression always
consistently estimates the population
parameters.

Under OR the population and causal
models coincide and hence the sample
regression also consistently estimates the
causal model

So we have the population model, which tells us what the best linear predictor of Y using X is, and for
which OR holds by construction. The sample linear regression always consistently estimates the population
regression. When OR holds in the causal model, then the causal model coincides with the population model
and hence the sample regression consistently estimates the causal model.
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OR, MI, and IN

OR Orthogonal (and mean zero):

E[u] = 0 and E[Xu] = 0 , or equivalently,
E[u] = 0 and Cov(X, u) = 0

MI Mean independent (and mean zero):

E[u] = 0 and E[u | X] = E[u]

IN Independent (and mean zero):
E[u] = 0 and u ⊥⊥ X

IN ⇒ MI ⇒ OR

If the causal model error satisfies OR then the causal model coincides with the linear regression model.

Mean Zero Error

Interestingly, our error mean zero assumption is actually unnecessarily strong. We are able to recover (β̂0, β̂1)
without it.

Suppose OR such that that Cov(X, u) = 0 but that E[u] ̸= 0.

From our FOCs we know that,
(1) E[Y − β0 − β1X] = E[u]
(2) E[(Y − β0 − β1X)X] = E[uX]

To recover,
(2) E[(Y − β0 − β1X)X] = E[uX]

E[Y X] − β0E[X] − β1E[X2] = E[uX]
(1) E[Y − β0 − β1X] = E[u]

E[Y ] − β0 − β1E[X] = E[u]
Immediately we can see that

β0 = E[Y ] − β1E[X] − E[u]

Using this further,

E[Y X] − β0E[X] − β1E[X2] = E[uX]
E[Y X] − (E[Y ] − β1E[X] − E[u])E[X] − β1E[X2] = E[uX]
E[Y X] + β1(E[X])2 − β1E[X2] − E[Y ]E[X] − E[u]E[X] = E[uX]
E[Y X] − E[Y ]E[X] − E[u]E[X] − E[uX] = β1{E[X2] − E[X]2}
Cov(Y, X) − Cov(u, X) = β1V ar(X)
Cov(Y, X) − 0 = β1V ar(X)

And so finally,
β1 = Cov(Y, X)

V ar(X)
β0 = E[Y ] − β1E[X] − E[u]

The point being that we can recover β1 without it being true that E[u] = 0, and infact providing we can
estimate E[u] we can recover β0 as well.
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Causal/Descriptive Distinction

Descriptive Interpretation Causal Interpretation

How is X correlated with Y. Think ‘Are’.

Example: Are test scores higher in schools
with smaller classes?

If OR fails, then we have a descriptive
interpretation. That is ’β̂1 gives, all else
equal, how, on average, Y changes with X’.

Example: ’Tests scores are, on average,
2.28 higher in districts with 1 less student
per teacher.’

What would happen to Y if we were to
change X. Think ‘Would’.

*Example:* Would a reduction in class
sizes improve test scores?

If OR holds, then we have a causal
interpretation. That is ’β̂1 gives, all
else equal, the causal effect of X on Y’.

Example: ’If we were to reduce class
sizes by 1, test scores would, all else equal,
increase on average by 2.28.’

Regression and Conditional Expectation

Population regression provides the best linear predication of Y given that we observe X = x

minb0,b1 E[Y − (b0 + b1X)2]

The conditional expectation of Y given X gives the best predication of Y among all possible functions of X,
including non-linear ones,

minm E[Y − m(X)2]
E[Y − m(X)2] = E[(Y − E[Y | X]) − (m(X) − E[Y | X])2]

= E[ϵ + g(X)2] where ϵ := Y − E[Y | X] and g(X) := −(m(X) − E[Y | X])
= E[ϵ + g(X)2] = E[ϵ2] + 2E[g(X)ϵ] + E[g(X)2]
notice that E[g(X)ϵ] = E[g(X)E[ϵ | X]] = E[Y | X] − E[Y | X] = 0
= E[ϵ + g(X)2] = E[ϵ2] + E[g(X)2]

Which is minimised when g(X) = 0, hence m(X) = E[Y | X]

When the CEF (conditional expectation function) is linear then regression provides the best approximation
of the CEF and hence both provide the same solution to the minimisation problem.

Otherwise regression provides a linear approximation of the CEF.
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Multivariate Regression

Y = β0 + β1X1 + β2X2 + u

Where now OR is given by,
OR Orthogonal to X1 and X2 (and mean zero):

E[u] = 0 , E[X1u] = 0, and E[X2u] = 0 or equivalently,
E[u] = 0 , Cov(X1, u) = 0, and Cov(X2, u) = 0

MI Mean independent of X1 and X2 (and mean zero):

E[u | X1, X2] = 0

We might have to/want to use a proxy variable ‘Z’ in a multivariate regression in order to predict X when
we are unable to measure X. Estimator on a Proxy is always considered descriptively.
Conditional mean is as it was the case with the simple regression model, the multivariate linear regression
function provides a linear approximation to the conditional (or an exact approximation if the conditional
mean is linear).

E[Y | X1 = x1, ..., Xk = xk] ≈ β̂0 + β̂1x1 + ... + β̂kxk

β1 = ∂

∂x1
E[Y | X1 = x1, ..., Xk = xk]

Frisch-Waugh-Lovell Theorem

FWL theorem explains the mechanics of multivariate regression.
Our problem is, as ever,

Yi = β0+β1X1i + β2X2i + ui

(β̂0, β̂1, β̂2) = argmin
1
n

n∑
i=1

(Yi − β0 − β1X1i − β2X2i)2

We can solve this by setting up the regression,

X1 = π0 + π2X2 + X̃1

with E[X̃1] = 0 , E[X2X̃1] = 0

Here X̃1 collects the part of X1 that is uncorrelated with X2. (In the proof this is a population linear
regression hence OR holds by construction)
We then set up the regression,

Y = β0 + β1(π0 + π2X2 + X̃1) + β2X2 + u

= β0 + β1π0 + β1X̃1 + (β1π2 + β2)X2 + u

= γ0 + β1X̃1 + γ2X2 + u

let γ2X2 + u = ϵ, by the definition of X̃1 we then know that Cov(ϵ, X̃1) = 0

Hence we can regress Y on X̃1 alone, giving the solution,

β1 = Cov(Y, X̃1)
V ar(X̃1)

16



In the multivariate case,
Y = β0 + β1X1 + ... + βkXk + u

β1 = Cov(Y, X̃1)
V ar(X̃1)

where X1 = π0 + π2X2 + ... + πkXk + X̃1

Providing OR holds, the OLS estimator satisfies the sample analogue,

β̂1 = Côv(Y, X̃”
1)

V âr(X̃”
1)

where X1 = π̂0 + π̂2X2 + ... + π̂kXk + X̃”
1

Perfect Multicollinearity

Perfect Multicollinearity describes a situation in which multivariate linear regression and FWL theorem fail.

The more X1 is explained by X2,. . . ,Xk, the smaller is, since is the part of X1 uncorrelated with X2,. . . ,Xk.

If X2,. . . ,Xk perfectly explain X1 then X̃1 = 0 hence the regression fails.

Example: Dummy variables

There are 3 types of school district: city, town, and rural.

If X1 = city, X2 = town, X3 = rural, then X2 and X3 perfectly explain X1, hence X̃1 = 0 and the regression
fails.
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Inference

Measures of fit

These tell us how well Y is explained by the model. That is how well Y is explained by β0 +
∑k

i=1 βiXi.

The better explained Y is by the model, the better the fit of the regression

Standard error of regression (SER)

The variance of error is given by,

σ2
u = V ar(ui) = E[u2

i ] − E[ui]2 = E[u2
i ]

And measures the extent to which Yi departs from the regression line.

σ2
u = 0 iff Yi always lies exactly on the regression line.

This is estimated by,

s2
û = 1

n − k − 1

n∑
i=1

û2
i

Note that
∑n

i=1(ûi − ¯̂ui)2 =
∑n

i=1 û2
i since

∑n
i=1 ûi = 0 from the FOCs.

Hence the SER is given by,

SER : sû =

√√√√ 1
n − k − 1

n∑
i=1

û2
i

Regression R-squared

R-squared is defined as the fraction of the variability of Yi that is explained by the model [explained error /
total error]

More regressors never decreases R-squared, and almost always increases it.

TSS :=
n∑

i=1
(Yi − Ȳ )2

ESS :=
n∑

i=1
(Ŷi − Ȳ )2

SSR :=
n∑

i=1
û2

i

R2 := ESS
TSS = 1 − SSR

TSS
Where,

• TSS : Total Sum of Squares,
• ESS : Explained Sum of Squares, and
• SSR : Sum of Square Residuals.
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It is also useful to realise that,

TSS =
n∑

i=1
(Yi − Ȳ )2 =

n∑
i=1

((Ŷi + ûi) − Ȳ )2

=
n∑

i=1
(Ŷi − Ȳ )2 +

n∑
i=1

û2
i − 2

n∑
i=1

(Ŷi − Ȳ )ûi

=
n∑

i=1
(Ŷi − Ȳ )2 +

n∑
i=1

û2
i

= ESS + SSR

Adjusted R-squared

R̄2 : 1 − n − 1
n − k − 1

SSR
TSS = 1 − SSR/(n − k − 1)

TSS/(n − 1) = 1 − s2
û

s2
y
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Inference on Regression Parameters

We want to know the answer to these four questions,

(1) Is β̂1 a good estimator?
(2) What is the distribution of β̂1 in large samples?
(3) How can we quantify the uncertainty associated with β̂1?
(4) How can we test hypotheses about β̂1?

Assumptions we will use,

(i) ui satisfies OR.
(ii) Yi, X1i,. . . , Xki are iid.
(iii) Large outliers are unlikely.
(iv) No perfect multicollinearity.

(1) Is β̂1 a good estimator? And (2) What is the distribution of β̂1 in large samples?

In short yes β̂1 is a good estimator. This is the case because β̂1 is,

1. Unbiased
E[β̂1] = β1

2. Consistent
β̂1

P−→ β1

3. Asymptotically normal √
n(β̂1 − β1) D−→ N(0, ω2

β1
)

4. Efficient (smallest variance amongst linear unbiased estimators) - BLUE : Best Linear Unbiased Esti-
mator

(3) How can we quantify the uncertainty associated with β̂1?

With the Standard Error! Consider first the asymptotic distribution and hence the asymptotic variance,
√

n(β̂1 − β1) D−→ N(0, ω2
β1

)

Which implies that,
β̂1

D−→ N(β1,
1
n

ω2
β1

)

Hence the standard error of β̂1,
s.e.(β̂1) = ω̂β1√

n

(A) Under Heteroskedasticity

The conditional variance of u does depend on the regressors – variance changes with the regressors.

We know that in this case the asymptotic variance of β̂1 is given by,

ω2
β1,hetero = V ar(X̃1u)

[V ar(X̃1)]2
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(B) Under Homoskedasticity

Where the conditional variance of u does not depend on the regressors.
The asymptotic variance of β̂1 in this case is given by,

ω2
β1,homo = σ2

u

V ar(X̃1)
Why?
Because the heteroskedastic asymptotic variance is,

ω2
β1,hetero = V ar(X̃1u)

[V ar(X̃1)]2
= E[X̃2

1 u2]
(E[X̃2

1 ])2

But we know that under homoskedasticity,

E[X̃2
1 u2] = E[E[X̃2

1 u2 | X]] = E[X̃2
1 E[u2 | X]] = σ2

uE[X̃2
1 ]

Hence,

ω2
β1,homo = V ar(X̃1u)

[V ar(X̃1)]2
= E[X̃2

1 u2]
(E[X̃2

1 ])2
= σ2

uE[X̃2
1 ]

(E[X̃2
1 ])2

= σ2
u

E[X̃2
1 ]

= σ2
u

V ar(X̃1)

IMPORTANT TAKEAWAY – Standard errors are different for hetero/homo-skedasticity.

(homo) s.e.(β̂1) = 1√
n

sû

ˆs.d.(X̃”
1)

(hetero) s.e.(β̂1) = 1√
n

ˆs.d.(X̃”
1 û)

V âr(X̃”
1)

(4) How can we test hypotheses about β̂1?

1. t-tests
H0 : β1 = b , H1 : β1 ̸= b

t(b) = β̂1 − b

s.e.(β̂1)
∼N(0, 1) (Under H0)

Then,
Reject H0 if |t(b)| > c

2. p-values
H0 : β1 = b , H1 : β1 ̸= b

t(b) = β̂1 − b

s.e.(β̂1)
∼N(0, 1) (Under H0)

Our sample delivers the t-value tact

p = P (|t(b)| > |tact = 2Φ(−|tact|)

Then,
Reject H0 if p > c

3. Confidence Intervals
C = {β̂1 ± cα × s.e.(β̂1)}
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Testing Multiple Hypotheses: The F-test

Suppose the model,
Yi = β0 + β1X1i + ... + βqXqi + ... + βkXki + ui

And that we want to test q restrictions,

H0 : β1 = β2 = ... = βq = 0
H1 : βI ̸= 0 ∃I ∈ {1, ...q}

We start by developing two models:

(1) Unrestricted Model:

Yi = β̂0,un + β̂1,unX1i + ... + β̂q,unXqi + ... + β̂k,unXki + ûi,un

SSRun =
n∑

i=1
ûi,un

(2) Restricted Model:
Yi = β̂0,rs + β̂q+1,rsXqi + ... + β̂k,rsXki + ûi,rs

SSRrs =
n∑

i=1
ûi,rs

The test,
F = SSRrs − SSRun

SSRun

n − k − 1
q

= (SSRrs − SSRun)/q

SSRun/(n − k − 1)
D−→ Fq,∞

Where, to be clear, q - number of restrictions; n - sample size; k - number of regressors.

Decision rule,
Reject H0 if F > cα

We can use the F-test to see if the model is at all relevant. Simply test the null hypothesis that none of the
variables are relevant (∀k, βk = 0). If we reject this hypothesis then the regression is not useless.

General F-test

Suppose the model,
Yi = β0 + β1X1i + ... + βqXqi + ... + βkXki + ui

And that we want to test q = 2 restrictions,

H0 : β1 = b and β2 + β3 = c

H1 : β1 ̸= 0 or β2 + β3 ̸= c

(1) Unrestricted Model:

Yi = β̂0,un + β̂1,unX1i + ... + β̂q,unXqi + ... + β̂k,unXki + ûi,un

SSRun =
n∑

i=1
ûi,un
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(2) Restricted Model:

Yi = β̂0,rs + bX1i + (c − β̂3,rs)X2i + β̂3,rsX3i + ... + β̂k,rsXki + ûi,rs

Notice he model is restricted by making a substitution for β̂1 = b and β̂2 + β̂3 = c. Then take any variables
with known coefficients to the LHS,

Yi − bX1i − cX2i = β̂0,rs + β̂3,rs(X3i − X2i) + ... + β̂k,rsXki + ûi,rs

Y ∗
i = β̂0,rs + β̂3,rs(X3i − X2i) + ... + β̂k,rsXki + ûi,rs

SSRrs =
n∑

i=1
û2

i,rs

The test,
F = SSRrs − SSRun

SSRun

n − k − 1
q

= (SSRrs − SSRun)/q

SSRun/(n − k − 1)
D−→ Fq,∞

Where, to be clear, q - number of restrictions; n - sample size; k - number of regressors.

Decision rule,
Reject H0 if F > cα
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Non-Linearities

• Models will always be linear in parameters for QE

• Perfect multicollinearity doesn’t matter here because it only matters if the variables linearly explain
one another.

Polynomials

Y = β0 + β1X + β2X2 + ... + βrXr + u

We can test how many polynomials we need by using the F-test to test the null of linearity against the rth

degree polynomial. The r at which we reject the null is how many we need,

H0 : β2 = ... = βr = 0

Suppose r = 2 For small changes the causal effect of X on Y is given by,

∂Y

∂X
= β1 + 2β2X

For larger changes the causal effect is calculated by the difference between the regression functions, i.e.

∆Y = Y (X + δX) − Y (X)

Statistical Inference on Marginal Effect

Y = β0 + β1X + β2X2 + u

Marginal effect:
∂Y

∂X
|X=x = Y ′(x) = β1 + 2β2x

Test:
H0 : Y ′(x) = b

H1 : Y ′(x) ̸= b

Notice that H0 : β1 + 2β2x − b = 0

Then use the general F-test described above, or since here q = 1 (one restriction), a t-test,

t(b) = Ŷ ′(x) − b

s.e.(Ŷ ′(x))
= β̂1 + 2β̂2x − b

s.e.(β̂1 + 2β̂2x)

Logarithms

(1) Linear-Log:
Y = β0 + β1logX + u

∆Y = β1∆logX ≈ β1
∆X

X

“A 1% increase in X has a 0.01 × β1 effect on Y ”
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(2) Log-Linear
logY = β0 + β1X + u

∆logY = β1∆X ⇒ ∆Y

Y
= β1∆X

“A unit increase of X increases Y by β1 × 100%”. Neat rule: (eβ̂1 − 1) × 100 gives the percentage
change in Y given a change in X.

(3) Log-Log
logY = β0 + β1logX + u

∆logY = β1∆logX ⇒ ∆Y

Y
= β1

∆X

X
⇒ β1 = ∆Y/Y

∆X/X

“β1 is the elasticity of Y wrt to X”

Interaction terms

(1) Constant
Y = β0 + β1X + β2D + u

If D = 1 then the constant is β0 + β2, or β0 when D = 0.

(2) Slope
Y = β0 + β1X + β3X · D + u

Where ∂Y
∂X = β1 + β3D =

{
β1 , D = 0
β1 + β3 , D = 1

.

(3) Constant & Slope
Y = β0 + β1X + β2D + β3X · D + u

In this case the interaction term affects both the constant and the slope.
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Problems with Regression Analysis

This section is titled “(quasi)-experiments and causal effects” in the notes and lectures, but I didn’t really
understand what that title meant.

Exogeneity & Endogeneity

Starting point is again the causal model,

Y = β0 + β1X1 + β2X2 + u

Will OLS consistently estimate β1?

• Requires Cov(X1, u) = Cov(X2, u) = 0

• If this is the case X1, X2 are exogenous.

• If Cov(X1, u) ̸= 0 then X1 is endogenous and OR fails, hence neither β1 nor β2 is consistently estimated
by OLS.

Causes of Endogeneity

(1) Omitted Variables

• Some determinants of Y are ‘buried’ in u and correlated with the X’s - the regressors.
• In this case then OR doesn’t hold. Recall that we need ∀I Cov(XI , u) = 0, but if u contains XJ

and ∃I Cov(XI , XJ) ̸= 0 then we have endogeneity.

(2) Measurement Error (in X1)

• Causes ‘attenuation bias’: β̂1 is shrunk towards zero.
• Measurement error in the dependent variable, Y , can be dealt with, though the error increases.

(3) Simultaneity/Reverse Causality

• Y also ‘causes’ X1 or X2.
• This topic will be discussed further in the instrumental variables section.
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(1) Omitted Variables:

Recall that for our coefficients to have a causal interpretation OR must hold, that is E[u] = E[X1u] = ... =
E[Xku] = 0 or E[u] = Cov(X1, u) = ... = Cov(Xk, u) = 0. If we omit variables in our regression, then they
get caught up in u - they are part of ‘everything else’ that explains Y . The problem, however, is that now
OR might not hold, since the omitted variable(s) could be correlated with one of our regressors.

Omitted Variable Bias (OVB) Formula

Let’s define the ‘long regression’,
Y = β0 + β1X1 + β2X2 + u

and assume OR holds, E[u] = E[uX1] = E[uX2] = 0.

Let’s also define the ‘short regression’,
Y = γ0 + γ1X1 + ϵ

We know that X1 in the short regression will be endogenous since ϵ = β2X2 + u and we know that
Cov(X1, ϵ) = Cov(X1, β2 + u) = β2Cov(X1, X2) + Cov(X1, u)

In order to be exogenous we would need either:

(1) β2 = 0 : X2 is irrelevant to Y, or

(2) Cov(X1, X2) = 0 : X2 is uncorrelated with X1.

Despite these concerns let’s do the population short regression anyway,

Y = γ0 + γ1X1 + e

where, by construction, E[e] = E[X1e] = 0

We know it will be the case that
γ1 = Cov(Y, X1)

V ar(X1)
Using the long regression,

Cov(Y, X1) = Cov(β0 + β1X1 + β2X2 + u, X1)
= Cov(β1, X1) + β1Cov(X1, X1) + β2Cov(X2, X1) + Cov(u, X1)
= 0 + β1V ar(X1) + β2Cov(X2, X1) + 0
= β1V ar(X1) + β2Cov(X2, X1)

And so,
γ1 = β1V ar(X1) + β2Cov(X2, X1)

V ar(X1) = β1 + β2
Cov(X1, X2)

V ar(X1)

Notice that Cov(X1,X2)
V ar(X1) is the formula for the population of X2 on X1. We can define this as π1.

From this we get the OVB formula,

γ = β1 + β2π1 where X2 = π0 + π1X1 + X̃2 , E[X̃2] = E[X1X̃2] = 0

Hence there is no bias (γ = β1) if:

(A) β2 = 0 : X2 is irrelevant to the determination of Y.

(B) π1 = 0 : X1 and X2 are uncorrelated.
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General Model OVB

Y = β0 + β1X1 + ... + βkXk + u

Where OR is assumed to hold.
If we omitted Xk,

Y = β0 + β1X1 + ... + βk−1Xk−1 + e

where OR holds by construction.
Hence the OVB formula,

γ1 = β1 + βkπ1

Where π1 is the coefficient on X1 of the population linear regression of Xk on the other X’s {1, . . . , (k − 1)}.

Proxying for Omitted Variables

(A) Single Proxy

Start with Y = β0 + β1X1 + β2X2 + u where E[u] = E[X1u] = E[X2u] = 0
Use some proxy for X2 called W , where W is a valid proxy for X2 if,

(1) E[Wu] = 0

(2) The error e in the (hypothetical) population linear regression X2 = δ0 + δ2W + e , E[u] = E[We] = 0
satisfies E[X1e] = 0.

• Error e in the ‘best (linear) prediction’ made about X2 on the basis of W alone, isn’t correlated
with X1.

• This implies X1 couldn’t help us improve upon this prediction.
• In other words, W must be a sufficiently ‘good’ predictor of X2, that what is left over isn’t

correlated with X1.
• Doesn’t preclude Cov(X1, X2) = 0, because X1 may itself be correlated with W .

Where does condition (2) come from?

X2 = δ0 + δ1W + e , E[e] = E[We] = 0

Subbing into the model for Y,

Y = β0 + β1X1 + β2(δ0 + δ1W + e) + u

= β0 + β2δ0 + β1X1 + β2δ1W + β2e + u

= (β0 + β2δ0) + β1X1 + β2δ1W + (β2e + u)

For OR to hold and us to be able to recover β1, the condition Cov(X1, β2e + u) = 0 hence requires that X1
and e are uncorrelated.

(B) Multiple Proxies

We can proxy for X2 with more than one proxy, say,

X2 = δ0 + δ1W1 + δ2W2 + e , E[e] = E[W1e] = E[W2e] = 0
This really doesn’t change much of what we do, other than needing condition (1) to hold for all proxies now,
rather than just the one.
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(2) Measurement Error:

LHS: Measurement Error in Dependent Variable

Suppose we don’t observe Y , but instead we observe Y ∗, which is Y with some measurement error Y ∗ =
Y + ey.

If we still want to regress Y on X we can with,

Y ∗ − ey = β0 + β1X + u

Y ∗ = β0 + β1X + (u + ey)

The conclusion from this is that, as long as Cov(X, ey) = 0 (the measurement error in Y is not correlated
with X) the OLS regression of Y ∗ on X would consistently estimate β1.

• Of course we also need OR to hold normally as well so that Cov(X, u) = 0, but we are talking about
a population regression here not sample, hence that holds by construction.

V ar(β1) is now larger due to additional error though.

RHS: Measurement Error in Independent Variable

Suppose now we don’t observe X but instead we observe X∗, which is X with some measurement error such
that X∗ = X + ex

Suppose Cov(X, ex) = Cov(Y, ex) = 0 - this is a very generous assumption to make!

Y = β0 + β1(X∗ + ex) + u

= β0 + β1X∗ + (β1ex + u)

Since Cov(X∗, ex) = Cov(X + ex, ex) = V ar(ex) then, Cov(X∗, u − β1ex) ̸= 0

Hence we cannot consistently estimate β1.

Could we make it consistent?

β∗
1 = Cov(Y, X∗)

V ar(X∗) = Cov(β0 + β1X∗ + ϵ, X∗)
V ar(X∗) = β1V ar(X∗) + Cov(ϵ, X∗)

V ar(X∗)

= β1V ar(X∗) + Cov(u − β1ex, X + ex)
V ar(X∗) = β1[V ar(X∗) + V ar(ex)]

V ar(X∗)

= β1[1 − V ar(ex)
V ar(X) + V ar(ex) ] = β1[ V ar(X)

V ar(X) + V ar(ex) ]

All this maths basically shows that β1 gets multiplied by something between 0 and 1 and hence β∗
1 will

shrink towards zero.

So we can’t really make it consistent no.
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(3) Simultaneity:

Two variables are jointly determined, rather than one being a function of the other.

Easiest place to see this problem is with supply and demand, where,

Q = β0 + β1P + β2X + u

Often X and u are uncorrelated, but the problem is that Q and u are obviously correlated (u gathers things
that determine Q).

We also know that Q determines P , when quantity changes price changes, hence P and u are correlated,
hence OR doesn’t hold.

Ergo, endogeneity.
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A Solution: Randomised Control Trials, Natural Experiments, and
Heterogeneous Causal Effects

The problem we need to solve is that of Cov(X, u) ̸= 0, that is the problem of endogeneity - of OR not
holding.

Random Control Trials

Randomly assign X to the study participants such that it is independent of their other characteristics.
Hence renders X independent of u by design – which implies Cov(X, u) = 0.
Example: OLS Binary Regressor

• D = 1 : treatment,

• D = 0 : control

• Difference in means gives us exactly the OLS estimator

Cov(Y, D)
V ar(D) = E[Y | D = 1] − E[Y | D = 0]

– OLS estimator satisfies analogous decomposition,

Côv(Y, D)
V âr(D) = Ê[Y | D = 1] − Ê[Y | D = 0]

– Or put more simply,
1
n1

∑
i | Di=1

Yi − 1
n0

∑
i | Di=0

Yi

– Here the conditional mean is linear, hence OLS exactly coincides with it.

Example: Conditional Random Assignment

• Perfect random assignment is not always possible, since you can’t up and move people just for your
RCT.

• For example if you are testing the effect of class sizes on test scores, you can’t move teachers around
the country, but you can randomly assign teachers to classes within a school.

• In this situation you still need to account for school district differences etc, but now standard of teaching
is random within a school.

• Then just uses the FWL theorem,

X = γ0 + γ1W1 + ... + γkWk + X̃

– Hence,

β1 = Cov(Y, X̃)
V ar(X̃)

WARNING: Endogenous or Bad Controls

• Only add pre-treatment characteristics to regressions in conditional assignment.

• If you add something that is post treatment then it will be endogenous – a post-treatment characteristic
has already been affected by the treatment!!
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Heterogeneous Causal Effects

What about if different people have different causal effects?

Yi = β0 + β1iXi + ui

Interestingly nonlinear models like quadratic regression and interaction terms are a case of heterogeneous
causal effect since different people do have different causal effects.

β1 = Cov(Y, X)
V ar(X) = ATE = ACE

The “average treatment/causal effect”.

Natural Experiments

This is just RCTs but you try and find them naturally.

Example: In Utero Nutrition & Birthweight

• Look at how maternal fasting during Ramadan affects birth weight.
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Instrumental Variables

Strategies for Regression so far

Y = β0 + β1X + u

Three strategies to estimate the causal effect of X on Y .

(1) Observational data (include proxies, other determinants, etc).

(2) RCTs: Randomly assign X such that Cov(X, u) = 0.

(3) Natural experiments: Find settings in which Cov(X, u) = 0

If all of these strategies fail then we may need to go beyond regression with instrumental variables.

One Instrument Case

Assumptions

Suppose a variable Z that satisfies the following conditions:

• Z1: Relevance: Cov(X, Z) ̸= 0

– Z is correlated with X.

• Z2: Exogeneity: Cov(Z, u) = 0

– Z is uncorrelated with any unmodelled determinants of Y .

• Z3: Exclusion: Y = β0 + β1X + δZ + u has δ = 0

– Z does not appear in the causal model.

Z2 & Z3 implies Z cannot have a direct effect on Y - it can only have an indirect effect via X.

Z1 implies its effect on X must be non-zero.

Structural Equation

Y = β0 + β1X + u

Where OR does not hold, hence,

Cov(X, u) ̸= 0 or equivalently E[Xu] ̸= 0

First Stage Regression

X = π0 + π1Z + v := X∗ + v

Where OR holds by construction (population regression), hence,

Cov(Z, v) = 0 or E[v] = E[Zv] = 0

Relevance condition implies π1 ̸= 0, this does not need to be causally interpreted.

33



Reduced Form Equation

Y = β0 + β1(π0 + π1Z + v) + u

= (β0 + β1π0) + β1π1Z + (β1v + u)
= γ0 + γ1Z + ϵ

Where, by the fact that E[v] = E[Zv] = 0 and by Z2: Cov(Z, u) = 0, OR holds, hence,

E[ϵ] = E[Zϵ] = 0

And

γ1 = β1π1

Estimation Method 1: Indirect Least Squares (ILS)

β1 = β1π1

π1
= γ1

π1
= Cov(Y, Z)/V ar(Z)

Cov(X, Z)/V ar(Z) = Cov(Y, Z)
Cov(X, Z)

Z1 is essential here, since Z1: Cov(X, Z) ̸= 0 implies that π1 ̸= 0 and hence the fraction is well defined.

Sample Counterpart,
β̂1 = γ̂1

π̂1
= Côv(Y, Z)

Côv(X, Z)

Estimation Method 2: Two-Stage Least Squares (2SLS)

X = π0 + π1Z + v := X∗ + v

Given that v is uncorrelated with Z (by construction since this a population linear regression) it is also
uncorrelated with X∗ since X∗ is a function of Z.

Cov(u, X∗) = cov(u, π0 + π1Z) = π1cov(u, Z) = 0

Hence X∗ gives the part of X that is uncorrelated with u.

Y = β0 + β1(X∗ + v) + u

= β0 + β1x∗ + (β1v + u)
= β0 + β1X∗ + η

Where,
Cov(X∗, η) = Cov(X∗, β1v + u) = 0

Hence β1 can be recovered by a two-stage process,

(1) Population regression of X on Z, giving predicted values X∗.

(2) Population regression of Y on X∗, yielding,

β1 = Cov(Y, X∗)
V ar(X∗)

Sample analogue, X̂ = π̂0 + π1Z (fitted values from regression of X on Z).

β̂1 = Côv(Y, X̂)
V âr(X̂)
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2SLS and ILS Coincide in the One Instrument Case

β1 = Cov(Y, X∗)
V ar(X∗) = Cov(Y, π0 + π1Z)

Cov(X∗, X − v) = π1Cov(Y, Z)
Cov(π0 + π1Z, X − v)

= π1Cov(Y, Z)
π1Cov(Z, X) + π1Cov(Z, v) where Cov(Z, v) = 0 by OR

β1 = Cov(Y, Z)
Cov(Z, X)
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Multiple Instrument Case

Assumptions

Suppose a variable Z that satisfies the following conditions:

• Z1: Relevance: At least one of π1, ..., πm is nonzero.

• Z2: Exogeneity: Cov(ZI , u) = 0 ∀I ∈ {1, ..., m}

– Z’s are uncorrelated with any unmodelled determinants of Y .

• Z3: Exclusion: Z1, ..., Zm does not appear in the causal model.

Structural Equation

Y = β0 + β1X + β2W1 + ... + βr+1Wr + u

Where X is (potentially) endogenous, and W ’s are exogenous, hence,

E[u] = 0 , Cov(X, u) ̸= 0 , Cov(WI , u) = 0 ∀I ∈ {1, ..., r}

First Stage Regression

X = π0 + π1Z1 + ... + πmZm + πm+1W1 + ... + πm+rWr + v

OR holds by construction since this a population regression.

Estimation: Two-Stage Least Squares (2SLS)

2SLS is preferable to ILS for multivariate regressions. In fact 2SLS is needed when there are more instruments
than endogenous variables that they are instruments for.

We start with the first stage regression,

X = π0 + π1Z1 + ... + πmXm + πm+1W1 + ... + πm+rWr + v := X∗ + v

And then substituting this into the structural equation to give,

Y = β0 + β1X + β2W1 + ... + βr+1Wr + u

= β0 + β1(X∗ + v) + β2W1 + ... + βr+1Wr + u

= β0 + β1X∗ + β2W1 + ... + βr+1Wr + (β1v + u)
= β0 + β1X∗ + β2W1 + ... + βr+1Wr + ϵ

In order for OR to hold in this equation it must be the case that,

(1) E[ϵ] = 0

• Which holds because E[v] = E[u] = 0

(2) Cov(WI , ϵ) = β1Cov(WI , v) + Cov(WI , u) = 0 ∀I ∈ {1, ..., r}

• Cov(WI , u) = 0 holds by the assumption that the W ’s are exogenous.
• Cov(WI , v) = 0 holds by construction since the W ’s are included in the first stage regression

which is a population regression.
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(3) Cov(ZI , ϵ) = β1Cov(ZI , v) + Cov(ZI , u) = 0 ∀I ∈ {1, ..., r}

• Cov(ZI , u) = 0 holds by Z2.
• Cov(ZI , v) = 0 holds by construction since the first stage regression is a population regression.

(4) No Multicollinearity

• There must be no multicollinearity between the RHS variables in

Y = β0 + β1X∗ + β2W1 + ... + βr+1Wr + ϵ

• Multicollinearity would arise in the case in which π1 = ... = πm = 0 as in that case X∗ is simply
a linear combination of the W ’s.

Sample Analogue,
X̂ = π̂0 + π̂1Z1i + ... + π̂mZmi + π̂m+1W1i + ... + π̂m+rWri

Then compute β̂1 as the coefficient on X̂ in a regression of Y on X̂, W1, ...Wr.
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Good Instruments?

Natural Experiments

• Great for IVs.

• Exogenous policy changes effect X’s.

• Affect X as if randomly.

• Generate Z’s that shift X as if randomly.

• Hence uncorrelated with u.

Examples:

(1) Y : Crime rates, X: Incarceration rates, looking at “would higher crime rates lead to higher incarcera-
tion rates?”

• Simultaneity problem.
• Prison capacity constraints mean that incarceration rates were kept lower.
• Use Z: lawsuits aimed at reducing prison overcrowding as an IV.

(2) Y : Mortality from heart disease, X: CC (cardiac catheterisation)

• Endogeneity problem: CC treatment depends on doctors assessment of patients overall health,
which also impacts mortality (patients overall health is in u).

• Z: distance from patients’ home to nearest CC performing hospital minus distance from patients
home to any hospital.

– Relevance: distance plausibly influences likelihood of getting CC.
– Exogeneity: not correlated with unobserved determinants of morality.
– Exclusion: expressed as relative distance since actual distance could indeed affect morality.
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Simultaneity & Instrumental Variables

Early in the section titled ‘Problems with Regression Analysis’ we briefly considered the probability of
simultaneity causing endogeneity and hence not allowing us to consistently estimate our coefficients.

Problem of Simultaneity: Supply & Demand

Note that in economics we only ever observe the equilibrium values for price and quantity (or wage and
hours worked, etc) because we can’t go around asking everyone ‘how much of the good would you purchase
if the price was £x’- we don’t live in some counterfactual land.
Hence for supply and demand for milk we have:

ln (Qs) = α0 + α1 ln(P ) + u ⇔ qs = α0 + α1p + u

ln
(
Qd

)
= δ0 + δ1 ln(P ) + v ⇔ qd = δ0 + δ1p + v

Which, given the equilibrium conditions, qs
i = qd

i , returns,

qi = a0 + a1p + u

qi = δ0 + δ1p + v

We actually can’t tell which is supply and which is demand without other regressors, such as income for the
demand equation and weather for the supply equation.

Example: Simultaneity Bias

(1) y1 = αy2 + β1z1 + u

(2) y2 = α2y1 + β2z2 + v

y2 = α2 (a1y2 + β1z1 + u) + β2z2 + v

(1 − a1α2) y2 = a2β1z1 + β2z2 + v + a2u

y2 = a2β1

(1 − a1a2)z1 + β2

(1 − a1a2)z2 + v + a2u

(1 − a1a2)
Now consider whether or not OR will hold in equation (1)

cov(y2, u) = cov

(
a2β1

(1 − a1a2)z1 + β2

(1 − a1a2)z2 + v + a2u

(1 − a1a2) , u

)
= cov

(
α2β1

(1 − a1α2)z1, u

)
=0

+ cov

(
β2

(1 − a1a2)z2, u

)
=0

+ cov

(
v + a2u

(1 − a1a2) , n

)

= cov

(
v + a2u

(1 − a1a2) , u

)
̸= 0

Hence OR does not hold.

• Note that we suppose that the covariance of the zI terms with the error is zero since in equation (1)
and (2) we supposed OR held

• In other words we are supposing z1 only affects y1 and hence is not correlated with u, and vice-versa
for z2 and v.

So regression (1) and (2) will not recover the parameters due to simultaneity, unless α2 = 0 and u and v are
uncorrelated, but that is a strong assumption.
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Example: Consistently Recovering the Elasticities

We are going to consider the price and quantity of milk, recall that we only observe the equilibrium values
of quantity and price since we can’t be bothered to go on a mission to ask everyone quantities they would
supply or buy in counterfactual situations.

Suppose the regression:
ln

(
Qmilk

i

)
= δ0 + δ1 ln

(
P milk

i

)
+ ui

qi = δ0 + δ1pi + ui

We know that δ1 gives the price elasticity of milk - that is the percentage change in quantity for a 1% change
in the price. (This comes from the fact this regression is log-log.)

An OLS regression of this equation suffers a simultaneity problem, since price and quantity are determined
by the interaction of demand and supply.

Figure 1: When supply & demand both shift we cannot consistently estimate either

And a regression of these points produced will not recover either the supply or demand curve for us, so we
have no idea what is going on. . .
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Suppose we want to recover the demand curve.

To consistently recover the demand curve we need to consider an instrument which makes only the supply
curve shift since that instrument while generate the points from which we can recover the demand curve and
hence its gradient (the elasticity).

2SLS hence estimates the demand curve with the use of an instrument that shifts supply but not demand.

Figure 2: With an instrument that only shifts supply we can consistently estimate demand

Example: Rainfall in dairy producing regions, since rainfall does not affect demand but is plausibly corre-
lated with the amount the cattle can graze and hence how much milk they produce.
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Inference in 2SLS Regression

Large Sample Distribution

Y = β0 + β1X + β2W1 + . . . + βr+1Wr + u

Where X is potentially endogenous, and m instruments Z1, . . . , Zm are available.
Assuming:

• ZI∀I ∈ {1, . . . , m} satisfies Z1, Z2, Z3 (Z’s are valid instruments).

• cov (WI , u) = 0 ∀I ∈ {1, . . . , k} (W’s are exogenous).

• Yi, Xi, Zi, Wh are iid.

• Large outliers are unlikely.

• There is no perfect multicollinearity among any subset of (W1, . . . , Wr) or (Z1, . . . , Zm)

Hence,
n1/2(β̂1 − β1) D−→ N

[
0, ω2

β1,N

]
Asymptotic variance is complex but can be calculated in R - use heteroskedastic robust option.

Precision

For,
Y = β0 + β1X + u

X = π0 + π1Z1 + . . . + πmZm + v

X∗ ≡ π0 + π1Z1 + . . . + πmZm

Then,

ω2
β2

1
=

E
[
(X∗ − µX∗)2

u2
]

(
E

[
(X∗ − µX∗)2

])2

Where µX∗ = E [X∗] = E[X]
For homoskedastic u

(
E

[
u2 | Z1, . . . , Zm

]
= E

[
u2]

,

ω2
β1,N

= var(u)
var (X∗)

Hence the precision of 2SLS improves (the asymptotic variance falls) if

• The ‘fit’ of the structural equation is better, that is var(u) is lower.

• More of X is explained by Z1, . . . , Zm, that is var (X∗) is higher.

• Using more (valid) instruments: improves ‘fit’ of first stage, hence var (X∗) is higher.

2SLS is less efficient than OLS since we are considering,

ω2
β1,IV

= var(u)
var (X∗) vs ω2

β1,OLS
= var(u)

var(X)
And we know that,

var (X∗) = var(X) + var(v) ≥ var(X)

Standard errors,
s.e.(β̂1N ) = n1/2ωβ1,IV
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Testing Instrument Validity

Consider the model,
Y = β0 + β1X + β2W1 + . . . + βr+1Wr + u

Where X is potentially endogenous, W ’s are exogenous; and there are m possible instruments Z1, ..., Zm

available.
Suppose that we want to test the validity of our instruments Z1, ..., Zm, that is we want to test our assump-
tions Z1 and Z2 in order to know whether or not our instruments meet them. This is how we might go
about that.

Relevance and Weak Instruments

Assumption: Z1

Z1: Relevance: At least one of π1, . . . , πm is nonzero in the regression

X = π0 + π1Z1 + . . . + πmZm + πm+1W1 + . . . + πm+rWr + ν

Testing: F-test

Z1 may be tested by the F-test:

H0 : π1 = . . . = πm = 0
H1 : π1 ̸= 0 ∃I ∈ {1, . . . , m}

F =SSRrs − SSRun

SSRun

n − k − 1
q

= (SSRrs − SSRun) /q

SSRun/(n − k − 1)
d−→ Fq,∞

Where: q is the number of restrictions and k is the number of slope coefficients in unrestricted model

Problem: Weak Instruments

Showing that the instruments aren’t irrelevant doesn’t help us enough. . .
If Z1 (relevance) holds, but only by a small amount, does not justify that inferences on β1 based on 2SLS
estimates and standard errors are necessarily reliable.
Why?

• For one Z and one W

ω2
β1,IV

= var(u)
var (X∗) = var(u)

π2
1 var(Z)

• In this simplified setting if π1 is very close to zero then the asymptotic variance ω2
β1,IV

will be very
large and β̂1 will not be asymptotically normal.

• This is known as having a weak instrument.

Solution

• No longer compare F statistic to critical values drawn from Fm,∞ distribution, but rather use larger
critical values.

• Often use 10 as a rule of thumb.
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Instrument Exogeneity

Assumption: Z2

Instrument exogeneity is implied by Z2 and requires,

cov (ZI , u) = 0 ∀ ∈ {1, . . . , m}

Testing

We might want to test this by considering if

côv (ZI , û) = 0 I ∈ {1, . . . , m}

Where û = Y − β̂0 − β̂1X − β̂2W1 − ... − β̂r+1Wr

Of course if it is the case that côv (ZI , û) = 0 ∀I ∈ {1, . . . , m} then our Z2 assumption is valid.

Problem: Single Instrument Case

The problem is that for a single instrument the restriction that cov(Z, u) = 0 is wholly used up in constructing
the 2SLS estimates.

Hence we cannot test for exogeneity of a single instrument.

(I) Explanation:
côv(Z, û) = côv

(
Z, Y − β̂0 − β̂1X

)
= côv(Z, Y ) − β̂1côv(Z, X)

• But recall that,
β̂1 = côv(Z, Y )

côv(Z, X)
• So it is the case that

côv(Z, û) = côv(Z, Y ) − côv(Z, Y )
côv(Z, X)côv(Z, X) = 0

What this means is that it is always the case in the single instrument IV regression that côv(Z, û) = 0
by construction.

This implies we cannot test whether or not côv(Z, û) = 0 and so we can’t test the exogeneity condition with
only one instrument.

Solution: Multiple Instrument Case

We can only test instrument exogeneity when we have multiple instruments (more than one Z)

(I) Explanation (1):
Y = β0 + β1X + u

X̂ = π̂0 + π̂1Z1 + π̂2Z2

• By the preceeding argument it must be the case that côv(X̂, û) = 0, but it doesn’t necessarily follow
that côv (Z1, û) = côv (Z2, û) = 0
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(II) Explanation (2):

• If both IV’s are valid then:
cov (Y,Z1)
cov (X, Z1) = β1 = cov (Y, Z2)

cov (X, Z2)
• Using Z1 and Z2 as separate instruments then:

β̂1 | Z1 = côv (Y1Z1)
côv (X, Z1) , β̂1 | Z2 = côv (Y, Z2)

côv (X, Z2)

• Under exogeneity both of these estimates should be close to one another.

Testing: F-test

Assume homoskedasticity : E
[
u2 | Z1, . . . , Zm

]
= E

[
u2]

1. Compute 2SLS residuals:
û = Y − β̂0 − β̂1X − β̂2W1 − ... − β̂r+1Wr

2. Conduct (homoskedastic) F-test

H0 : δ1 = ... = δm = 0
H1 : δI ̸= 0 ∃I ∈ {1, ..., m}

UN : û = δ0 + δ1Z1 + ... + δmZm + δm+1W1 + ... + δm+rWr + η

RS : û = δ0 + δm+1W1 + ... + δm+rWr + η

Use the adjusted F-statistic:
F ∗ = m

m − 1F

Which basically just changes our old F - stat to have one less degree of freedom

And compare to critical values from Fm−1,∞, because we already said this won’t work for m = 1 – one
restriction is used up in estimating by 2SLS hence we have one less degree of freedom.

Hetero-robust version has distribution:
X 2

m−1
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Randomised Control Trials: Imperfect Compliance

Treatment Status vs Offer to Treat

D is the treatment status, that is whether the treatment was actually received.
Z is the offer to treat / treatment assignment.
Perfect compliance means that Di = Zi ∀i; imperfect compliance means that Di ̸= Zi ∃i.
We can always randomly assign Z, but we cannot always randomly assign D

• Example: We can always offer some people randomly discounted University fees, but we can’t assign
that some people attend university and others do not - ethically that would not be okay.

Estimated Treatment Effect (2SLS) and Intention to Treat (ITT)

(1) (2) (3) (4)
Dep. var Y Y D Y
Method OLS 2SLS OLS OLS
D 0.087 0.145 0.786

(0.044) (0.060) (0.043)
Z 0.108

(0.041)

Here (2) gives estimated treatment effect (2SLS), that is,

• How Y changes with D,

• How the variable we are interested in impacts the dependent variable.

And here (4) estimates the ITT: Intention to treat (OLS)

• How Y changes with Z,

• How the inducement impacts the dependent variable.

(1) (2) (3) (4)
Dep. var lwage luage educ lwage
Method OLS 2SLS OLS OLS
educ 0.079 0.145

(0.002) (0.063)
Z 0.436 0.064

(0.071) (0.026)

So (1) gives inconsistent OLS estimate,
But (2) gives consistent 2SLS estimate (Treatment effect),
And (3) first stage regression,
While (4) reduced form regression (ITT),
And notice that,

0.064
0.436 = 0.145

Hence either method recovers the coefficient in this simple regression mode. That is
ITT

First Stage = ILS or 2SLS
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When Random Assignment fails

Fails due to:

(1) Non-compliance with the treatment protocol

• Example: Pushy parents get their children into the class with the teacher they think is best.

(2) Impossible to realise due to costs/ethics

• Example: Completing a degree, attending private vs state school. . .
• Can’t randomly assign students to not go to uni/drop out as a control group to see if a degree

helps wage prospects.

Solution: Randomly assign an inducement

Assign the payments independently of student’s characteristics.

If the inducement affects uptake of the treatment then it is an instrumental variable.

• E.g. Offer a sum of money for people to complete a degree.

If this attracts people to do degrees then use the inducement as the IV.

Z can be randomly assigned

• E.g. Award scholarships to university by a lottery.

Use Z and the instrument for D

Heterogeneous Causal Effects

Yi = β0 + β1iXi + ui

Xi = π0 + π1Zi + vi

β̂IV = côv(Y, Z)
côv(X, Z)

p−→ cov(Y, Z)
cov(X, Z) = βIV

βIV = E

[
β1i · π1i

E [π1i]

]
= LATE

2SLS estimates the average treatment effect of those who respond most to the instrument (the offer of
treatment).

It’s a weighted average of the underlying heterogeneous causal effects termed the local average treatment
effect.
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Time Series: Stationarity

Strict Stationarity

The time series {Yt, t ∈ Z} is strictly stationary if the joint distributions (Yt, Yt+1, . . . , Yt+k) =
D

(Ys, Ys+1, . . . , Ys+k) for all t, s and k

Weak Stationarity

The time series {Yt, t ∈ Z} is weakly stationary if:

(i) E[Yt] = m for all t

(ii) V ar(Yt) = σ2 < ∞ for all t.

(iii) Cov(Yt, Ys) = Cov(Yt+h, Ys+h) for all t, s, h ∈ Z.

(iii’) Cov(Yt, Yt−h) = γh for all h (this is equivalent to (iii)).

Descriptive Statistics

Given that {Yt}T
t=1 = {Yt} is stationary we have,

Sample Mean

ȲT = 1
T

T∑
t=1

Yt
P−→ µ = E [Yt]

Sample Variance

γ̂0 = V âr (Yt) = 1
T

T∑
t=1

(
Yt − ȲT

)2

Notice that the variance is equivalent to covariance (Cov(Yt, Yt−h)) at h = 0, hence it is the same as γ0.

Sample Covariance

γ̂h = côv (Yt, Yt−h) = 1
T

T∑
t=h+1

(
Yt − ȲT

)2 (
Yt−h − ȲT

)2

hth autocorrelation function (ACF);

ρh = Cov (Yt, Yt−h)[
V ar (Yt) V ar (Yt−h)

]1/2 = Cov (Yt, Yt−h)
V ar (Yt)

With the sample analogue,
p̂h = côv (Yt, Yt−h)

vâr (Yt)
= γ̂h

Ŷ0
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Persistence

We measure persistence using the ACF, which measures the extent of correlation between Yt and Yt−h as h
varies.

We only need to consider positive h values because, γh = Cov (Yt, Yt−h) = Cov (Yt+h, Yt) = Cov (Yt, Yt+h) =
γ−h which implies it is the case that ρh = ρ−h. Note also that ρ0 = cov (Y1, Y1) / var (Y1) = 1

Persistence is,

• The speed at which {Y(t)} reverts to its mean

• The extent of serial correlation in the time series

ρh decays more gradually as h increases for more persistent series.

Weakly stationary models tend to be only weakly persistent (correlated at short lags, but have tendency to
revert to the mean)
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Autoregressive Models

AR(1) & AR(p) Model

Models

AR(1) : Yt = β0 + β1Yt−1 + ut

AR(p) : Yt = β0 + β1Yt−1 + . . . + βpYt−p + ui

Yt = β0 +
p∑

i=1
βiYt−i + ut

For t ∈ {1, 2, . . . , T}, with Y0 as the initial value, which is also a random variable and where {ut} is the
driving innovation or shock sequence and is assumed to be stationary and not forecastable based on past
values of Y ,

0 = E [ut | Yt−1, Yt−2, . . .] = E [ut | yt−1]
Or we can assume {ut} is iid, hence

E [ur] = 0 , E
[
u2

t

]
= σ2

u

Which implies the conditional expectation above.
This implies that {ut} is serially uncorrelated

Cov (ut, ut−h) = 0 ∀h ̸= 0

Stationarity

Stationarity of AR(1) requires,

β1 ∈ (−1, 1)

Y0 is such that E[Y0] = β0

1 − β1
, V ar(Y0) = σ2

u

1 − β2
1

Proof:

• Assume that {Yt} is stationary, hence

µY = E [Yt] = E [Yt−1]
σ2

Y = var (Yt) = var (Yt−1)
Yh = cov (Yt, Yt−h)

• Hence it must be the case that,
– Expectation

E[Yt] = β0 + β1E[Yt−1] + E[ut]
=0

⇒ µY = β0 + β1µY

E[Y0] = µY = β0

1 − β1

– Variance
V ar(γt) = β2

1V ar(γt−1) + V ar(ui) + 2β1Cov(γt−1, ui)
= β2

1V ar(Yt−1) + V ar(ui)
σ2

Y = β2
1σ2

Y + σ2
u

V ar(Y0) = σ2
Y = σ2

u

1 − β2
1

⇒ |β1| ≥ 1
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– Autocovariance

cov (Yt, Yt+h) = cov (Yt, β0 + β1Yt+h−1 + ut+h) = β1 cov (Yt, Yt+k−1)
= β1 cov (Yt, Yt+h−1)
= β2

1 cov (Yt, Yt+h−2)
= β1

h cov (Yt, Yt) = βh
1 σ2

Y

Stationarity of AR(p) is a much more involved proof, but one important requirements is that,
p∑

i=1
βi < 1
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Forecasting with Autoregressive Models

General Problem

We observe t = 1, . . . , T and want to forecast T + h.

Optimal forecast is mean-squared (forecast) error minimising (MSFE-minimising forecast), hence we need a
function m∗ (yt−1) that solves

min
m(.)

E [Yt − m (yt−1)]2

Which is the conditional expectation - if you don’t know why this is the case read over the early proof by
clicking here.

Importantly for this section I will be using this shorthand YT +h | T for the conditional expectation of YT +h

given that we know yT , where yT = {yT , yT −1, ..., y1}. That is,

YT +h | T = E [YT +h | yT ]

AR(p) Case

Assume {Yt} follows,

Yt = β0 +
p∑

i=1
βiYt−i + ui , E[ut | yt−1] = 0

Hence we know that

E[Yt | yt−1] = β0 +
p∑

i=1
βiE[Yt−i | yt−1]

=Yt−i for i≥1
+ E[ut | yt−1]

=0

= β0 +
n∑

i=1
βiYt−i

Then the optimal 1-step ahead forecast is,

YT +1 | T = E [YT +1 | yT ] = β0 +
p∑

i=1
βiYT +1−i

= β0 + β1YT + ... + βpYT +1−p

The optimal h-step ahead forecast is,

YT +h | T = E [YT +h | yT ] = β0 +
p∑

i=1
βiE [YT +h−i | YT ]

= β0 +
p∑

i=1
βiYT +h−i | T

= β0 + β1YT −1+h + ... + βpYT −p+h

Estimated Counterpart & Recursion

There are two important things to note here,

(1) These forecasts are infeasible

• While they are indeed optimal (min MSFE) they are infeasible since we don’t know what β0, ..., βp

are!
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• Hence we have to use an estimated counterpart to make our forecasts,

ŶT +h | T = β̂0 +
p∑

i=1
β̂j ŶT +h−i | T

• We can do this by OLS since our assumption of E[ut | yt−1] = 0 implies that E[ut] = 0 and
Cov(ut, Yt−i) = 0 ∀i ∈ {1, . . . , p} and hence OR is satisfied.

(2) Need for recursion in the h-step ahead forecast

• Notice in the h-step ahead forecast, say for p = 1 and h = 2 we have

YT +2 | T = β0 + β1YT +1 | T

• Notice that as well as not knowing what β0 and β1 are, we also don’t know what YT +1 | T is as it
falls outside of our sample. Hence we will need to use recursion to find future values: Start with
your final observation YT ; Sub that in to find YT +1 | T ; Repeat for YT +2 | T .

Out of Sample Forecast Errors

These errors are for an AR(p) model, with a sample from {1, ..., T}, and for a one-step ahead forecast for
simplicity. This is because in the one step ahead forecast the independent variables in our model: YT +1−i’s;
are all within our dataset for i = {1, ..., p} because YT +1−1 = YT , etc. This means we don’t need to use
recursion here.

The error from the infeasible forecast is,

eT +1 | T =
(
YT +1 − YT +1 | T

)
=

[
β0 +

p∑
i=1

βiYT +1−i + uT +1

]
−

[
β0 +

p∑
i=1

βiYT +1−i

]
= uT +1

• In case it isn’t obvious what is happening here: the error in our forecast - that is the difference
between what YT +1 actually is, and what we expected YT +1 to be: YT +1 | T - in the case in which we
know what β1 and all βi are is just uT +1. That is the unknown & unforecastable error term
that takes us from YT to YT +1.

The error from the feasible forecast is,

êT +11T = YT +1 − ŶT +1 | T =
(

β0 +
p∑

i=1
βiYT +1−i + uT +1

)
−

(
β̂0 +

p∑
i=1

β̂iYT +1−i | T

)
= uT +1 +

{
(β0 − β̂0) +

p∑
i=1

(βi − β̂i)YT +1−i

}

• Again to explain: Now we have two components to our forecast error.

(i) The first is the error we saw in the infeasible forecast case: uT +1. In the feasible forecast case we
still don’t know what the the unknown & unforecastable error term that takes us from
YT to YT +1 is, so that error is still part of our forecast error.

(ii) The second is a new error though. This is estimation error from our OLS regression we ran to
estimate what we think β0 and all the βi’s are. So this is the difference between what we
thought these values were: β̂0, β̂1, ... and what they actually turned out to be: β0, β1, ....

The two components are orthogonal (uncorrelated) since E [eT +1 | yT ] = E [uT +1 | yT ] = 0
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Forecast performance: MSFE

We really consider the forecast performance by considering the Mean Squared Forecast Error, that is the
expectation of the square of the error we found above.

In the infeasible case,
MSFE(YT +1 | T ) = E[e2

T +1 | T ] = E[u2
T +1] = σ2

u

And in the feasible case,

MŜFE(ŶT +1 | T ) = E[ê2
T +1 | T ] = E[e2

T +11T ] + E[YT +11T − ŶT +1 | T ]2

= σ2
u + E

[
YT +11T − ŶT +11T

]2

= σ2
u + E[(β0 − β̂0) + (β1 − β̂1)YT ]2

Notice that σ̂2
u isn’t a good estimate of MSFE(ŶT +1 | T ), it will always underestimate it since if we just used

σ̂2
u we miss out the second component of the error - the OLS estimation error.

Estimating MSFE

First we will need to obtain a sequence of ‘pseudo’ out of sample forecast errors - recall that we can’t recover
êT +1 | T = YT +1 − ŶT +1 | T since Y (T + 1) is outside of our sample.

So instead we’ll solve for some s < T and use that! ês+1 | T = Ys+1 − Ŷs+1 | T where Y (s + 1) is within our
sample!

If we suppose an AR(p),

-Compute ês+1 | T = Yx+1 − Ŷs+1 | T

• By estimating a model in the subsample {YT }s
t=1

Ŷs+1 | T = β̂0,s +
p∑

i=1
β̂i,sŶs+1−i

– ês+1 | T = Ys+1 − Ŷs+1 | T is recoverable since Ys+1 is observed.

• Repeat this for the final P periods (for s ∈ {T − P, . . . , T − 1} ), so we get
{

ês+1 | s

}T −1
s=T −P

Finally estimate MSFE:

For h = 1

MŜFE(ŶT +1 | T ) = 1
P

T −1∑
s=T −P

ê2
s+1 | T

For any h

MŜFE(ŶT +h | T ) = 1
P

T −h∑
s=T −P −(h−1)

ê2
s+1 | T
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Model Selection

How many lags?

Big p means a more flexible model, with less bias.

Small p means a lower variance.

Don’t use R2, SER, or R̄2: The first doesn’t penalise larger models at all, the other two don’t penalise
additional lags enough.

Methods of selecting models

(1) Directly compare MŜFE(Ȳ )

• Problem: may be unreliable if small P is used to estimate the MSFE(Ȳ ) - where P is the sample
size used, or the number of periods over which we are estimating the MSFE (note the difference
between p and P here).

(2) Stepwise testing down procedure

• Start with some p lags.
(i) Peform a t-test that H0 : βp = 0
(ii) If we accept H0 : βp = 0 then test H0 : βp−1 and repeat until we reject the null.

• Problem: β̂i could be significant by chance.

(3) Information Criteria

• AICm = log

(
SSRm

T

)
+ m 2

T

• BICm = log

(
SSRm

T

)
+ m log(T )

T

– m : number of model parameters (AR(p) has m = p − 1).
– T : length of period, i.e. 1, ..., T .

• Differences
– BIC penalises larger models more than AIC,
– BIC is consistent (it chooses the correct p for an AR(p) with high probability),
– AIC is conservative (chooses a p slightly larger than correct p).
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ARDL(p,q) Model

Yt = β0 +
p∑

i=1
βiYt−i +

q∑
i=1

δiXt−i + ui where E [ut, yt−1, xt−1] = 0 and {Y, Xt} are jointly stationary

Standard inference holds if Y and X are stationary and weakly dependent.

MSFE-minimising forecast of YT +1 is,

YT +1 | T = E [YT +1 | yT , xT ]

= E
[
β0 +

p∑
i=1

βiYT +1−i +
p∑

i=1
δiXT +1−i + uT +1

∣∣∣ yT , xT

]
= β0 +

p∑
i=1

βiYT +1−i +
p∑

i=1
δiXT +1−i

Estimate by plugging in OLS estimates:

ŶT +1 | T = β̂0 +
p∑

i=1
β̂iYT +1−i +

p∑
i=1

δ̂iXT +1−i

Get longer run forecasts by recursion

YT +2 | T = E
[
β0 +

p∑
i=1

βiYT +2−i +
p∑

i=1
δiXT +2−i + uT +2 | yT , xT

]
= β0 +

p∑
i=1

βiE [YT +2−i | yT , xT ] +
p∑

i=1
δiE [XT +2−i | yT , xT ]

= β0 +
p∑

i=1
βiYT +2−i | T +

p∑
i=1

δiXT +2−i | T

For p = q = 1 this would be,

YT +2 | T = E [β0 + β1YT +1 + δ1XT +1 + uT +2 | yT , xT ]
= β0 + β1E [YT +1 | yT , xT ] + δ1E [XT +1 | yT , xT ]
= β0 + β1YT +1 | T + δ1XT +1 | T

• In order to complete this we’d need to forecast the dependent variable X for T + 1 from the model,

X̂t = γ̂0 +
p′∑

i=1
γ̂iXt−i +

q′∑
i=1

θ̂iYt−i + vt where E [vt | yt−1, xt−1] = 0

• And of course we would need to forecast Y for T + 1 which, as shown above, is,

ŶT +1 | T = β̂0 +
p∑

i=1
β̂iYT +1−i +

p∑
i=1

δ̂iXT +1−i
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Granger Causality

For Granger causality we are asking if introducing {Xt} help forecast {Yt}, that is does switching from an
AR(p) to and ARDL(p,q) help us forecast Y ?

{Xt} does not Granger cause {Yt} if lags of {Xt} carry no useful information about {Yt} in addition to
that carried by its own lags, that is

E
[{

YT +1 − E [YT +1 | yT , xT ]
}2

]
= E

[{
YT +1 − E [YT +1 | yT ]

}2
]

or
MŜFE(YT +1 | y,x) = MŜFE(YT +1 | y)

{Xt} does Granger cause {Yt} if lags of {Xt} carry useful information about {Yt} in addition to that
carried by its own lags, that is

E
[{

YT +1 − E [YT +1 | yT , xT ]
}2

]
< E

[{
YT +1 − E [YT +1 | yT ]

}2
]

or
MŜFE(YT +1 | y,x) < MŜFE(YT +1 | y)

Testing for Granger Causality:

We must test an ARDL(p,q) where p = q, otherwise extra predictability could just come from having more
lags.

(1) Choose p = q by sequential testing or by using AIC/BIC.

(2) Perform an F-test,

Yt = β0 +
p∑

i=1
βiYt−i +

q∑
i=1

δXt−i + ui where E [ut | yt−1, xt−1] = 0 and {Yt, Xt} : jointly stationary

H0 : δ1 = δ2 = . . . = δp = 0

(3) Rejecting null implies that {Xt} Granger causes {Yt}.
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Nonstationary Times Series

Modelling and forecasting for non-stationary time series

Differencing Non-Stationary to Stationary

We can account for non-stationarity by transforming non-stationary series to stationary ones via,

(1) Differencing
• First difference: ∆Yt = Yt − Yt−1

• Seasonal difference: ∆4Yt = Yt − Yt−4

(2) Logarithms and Growth rates
• Difference of logs:

∆log(Yt) = log(Yt) − log(Yt−1)

= log( Yt

Yt−1
) = log(∆Yt + Yt−1

Yt−1
) = log(1 + ∆Yt

Yt−1
) ≈ ∆Yt

Yt−1

• Difference of logs is better than percentage changes since logs are symmetric, whereas percentage
changes are not,

• If something goes up by 1% from t to t + 1 (call this ’in t + 1′ ), then goes down by 1% in t + 2
we do not get back to the original value at t

• If a log is 0.5 in t + 1 and −0.5 in t + 2 then we get back to the original value at t.
• Change in log ×100 is % growth rate though.
• Annualised % growth rate: 400 × ∆ log (Yi).

(3) Deterministic Detrending
Yt − δ0 − δ1t

Breaks and Parameter Instability

We might also be able to accommodate non-stationarity by checking if these stationarity holds during certain
epochs. That is by checking if there are breakpoints at which the series becomes non-stationary.
For this we will consider the model,

Yt = β0 + β1Yt−1 + ut , E [ui, yt−1] = 0 , E
[
u2

t

]
= σ2

u , |β1| < 1

Known Break: Breakpoint Dummies

Suppose we know that the break is at period τ

We could then specify AR(1) model with breakpoint dummies
γt = β0 + β1Yt−1 + γ0Dt(τ) + γ1Dt(τ)Yt−1 + ut

Dt(τ) =
{

1 if t ≤ τ
0 if t > τ

The implication of this is that:

• Intercept: β0 + γ0 until τ then β0.

• Coefficient: β1 + γ1 until τ then β1.
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Chow Test

On the same AR(1) model above we would test

H0 : γ0 = γ1 = 0

With an F-test F2,∞ (2 because there are 2 restrictions)

Accepting null implies no break.

Unknown Break

Suppose we do not know where a break could be. How might we go about testing in this case?

QLR Test

Allow for breaks at τ ∈ {τ0, τ0 + 1, . . . , τ1} for τ0 ≃ πT, τ1 ≃ (1 − π)T

For each τ compute the Chow test statistic F (τ)

QLR statistic is the largest of all of these Chow test statistics:

QLR = max {F (τ0) , F (τ0 + 1) , . . . , F (τ1)}

Tend to choose π = 15%

Critical values depend on q (the number of restrictions)

τ̂ = argmax F (τ)
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Unit Roots & Stochastic Trends

Deterministic trends: has a determined trend, such as yt = ct + εt which has E [yt] = ct, var (yt) = σ2
e

Stochastic trends: One that changes each run due to the random component of the process, such as
yt = c + yt−1 + εt which has var (yt) = tσ2

e

AR models for non-stationary time series

{∆Yt} is AR(p) iff {Yt} is AR(p + 1) with
∑p

i=1 βi = 1

Hence if ∆Yt follows an AR(p) then {Y } is not stationary. What is the implication of this?

• Previously we have been differencing {Y } and fitting a (potentially stationary) AR(p) model to {∆Yt},
but we don’t have to do that!

• We can just fit an AR(p+1) model to {Yt}.

Note that the claim is not being made here that if we have a non-stationary AR(p) model of {Yt} then if we
difference and fit an AR(p-1) model to {∆Yt} then it will be stationary. It is not necessarily the case that
{Yt} is I(1) and hence we might have to difference multiple times to get to stationarity. The claim is merely
that this relationship between differencing and AR(p) models holds, which might prove useful so that when
we do have non-stationary and I(1) series like {Yt}, rather than differencing we might just be able to fit an
AR(p-1).

Unit Roots or Difference

So which should we do? Use the Unit Roots or Difference?

• We know that {∆Yt} is AR(p-1) iff {Yt} is AR(p) with
∑p

i=1 βi = 1 so if we have a unit root we can
just difference it and get a not unit root

• But the parameters of both are consistently estimated by OLS.

• Problem with unit roots is that CLTs do not apply, hence we get non-standard inference as some
regression estimates are not asymptotically normal. -Unit root is also more likely to be biased.

• Hence if we know we have a unit root it is preferable to difference it.

• But don’t over-difference because that is also bad.
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AR(1) Unit Roots

AR Representation

Yt = β0 + Yt−1 + ut

MA Representation

Yt = tβ0 + Y0 +
t∑

i=1
uj

Proof: Recursive Substitution

Yt = β0 + Yt−1 + ut

Yt = β0 + (β0 + yt−2 + ut−1) + ut

Yt = 2β0 + (β0 + Yt−3 + ut−2) + ut−1 + ut

...

Yt = hβ0 + Yt−h + ut−h+1 + ut−h+t

Yt = hβ0 + Yt−h +
h−1∑
j=0

ut−j

Then set h = t and so

Yt = tβ0 + Y0 +
t−1∑
j=0

ut−j = tβ0 + Y0 +
t∑

j=1
uj

Properties

(1) tβ0 is a deterministic function of time (process either grows or decays).

(2) Ut =
∑t

j=1 uj wanders randomly,

• Ut+1 =
∑t+1

j=1 uj =
∑t

j=1 uj +ut+1 = Ut +ut +1 - highly persistent, new value is equal to previous
plus unforecastable innovation.

• V ar(Ut) = tσ2
u - clearly nonstationary.
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AR(p) Unit Roots

AR Representation

Yt = β0 +
p∑

i=1
βiYt−1 + u1 ,

p∑
i=1

βi = 1 , E [ut | yt−1] = 0

MA Representation

Yt = tβ0 + Y0 + Vt

• Where Vt =
∑t

j=1 vj and {vt} is stationary: a stochastic trend

– If not then {vt} is serially correlated, but we still get random wandering behaviour.
– If {vt} is serially uncorrelated then we have a random walk

∗ Random walk is a special case of stationarity

Unit root (AR) process:

• {Yt} follows an AR(p) model with
∑p

i=1 βi = 1

– special case: β1 = 1 in the AR(1) model

• Decomposes into sum of a deterministic trend (if β0 ̸= 0 ), a stochastic trend, and an initial value

Yt = β0t +
t∑

s=1
vt + Y0
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Testing for Unit Roots

Hypotheses under AR(1)

Model (constant only)
Yt = β0 + Yt−1 + ut , E [ut | yt−1]

Unit root implies β1 = 1, stationarity implies β1 < 1, hence

H0 : β1 = 1 H1 : β1 < 1

Equivalent form,
Yt = β0 + β1Yt−1 + ut, E [ut | yt−1]

∆Yt = β0 + β1Yt−1 − Yt−1 + ut

= β0 + (β1 − 1) Yt−1 + ut

= β0 + δYt−1 + ut

δ = β1 − 1 , δ̂ = β̂1 − 1

H0 : δ = 0
H1 : δ < 0

So a unit root corresponds to δ = 0 while stationarity corresponds to δ < 0.

Hypotheses under AR(p)

Model (constant only)

∆Yt = β0 + δYt−1 +
p∑

i=1
γi∆Yt−i + ut

Model (constant & trend)

∆Yt = β0 + αt + δYt−1 +
p∑

i=1
γi∆Yt−i + ut

AR(2) (constant only) case:

∆Yt = β0 + δYt−1 + γ1∆Yt−1 + ut

Yt − Yt−1 = β0 + δYt−1 + γ1 (Yt−1 − Yt−2) + ut

Yt = β0 + (δ + γ1 + 1) Yt−1 − γ1Yt−2 + ut

= β0 + β1Yt−1 + β2Yt−2 + ut

β1 + β2 = 1 ⇒ (δ + γ1 + 1) − γ1 = δ + 1 = 1 ⇒ δ = 0

Hence AR(p) is same as AR(1) case. That is a unit root corresponds to δ = 0 while stationarity corresponds
to δ < 0
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ADF Test: Constant Only

∆Yt = β0 + δYt−1 +
p∑

i=1
γi∆Yt−i + ui

(1) Hypotheses: H0 : δ = 0 H1 : δ < 0

• Null implies {∆Yt} is AR(p), hence {Yt} unit root
– NOTE: this doesn’t imply that ∆Yt is stationary, we would need to test this separately,

accepting the null only implies that {Yt} has a unit root.
• Alternative implies {Yt} is stationary AR(p+1).

(2) Test-statistic: t = δ̂
s.e. (δ̂)

D−→ DFcn

(3) Decision Rule: reject if t < cα

(4) Critical Values: from DF CONSTANT distribution

Left-tail critical value 10% 5% 1%
N [0, 1] −1.28 −1.64 −2.33
DFcn : constant only −2.57 −2.86 −3.43

ADF Test: Constant and Trend

∆Yt = β0 + αt + δYt−1 +
p∑

i=1
γi∆Yt−i + ut

(1) Hypotheses: H0 : δ = 0 H1 : δ < 0 -Null implies {∆Yt} is AR(p), hence {Yt} unit root - NOTE: this
doesn’t imply that ∆Yt is stationary, we would need to test this separately, accepting the null only
implies that {Yt} has a unit root.

• Alternative implies {Yt} is trend stationary AR(p+1).
– It is stationary about the trend

(2) Test-statistic: t = δ̂
s.e. (δ̂)

D−→ DFtr

(3) Decision Rule: reject if t < cα

(4) Critical Values: from DF TREND distribution

Left-tail critical value 10% 5% 1%
N [0, 1] −1.28 −1.64 −2.33
DFcn : constant only −2.57 −2.86 −3.43
DFtr : constant and trend −3.21 −3.41 −3.96
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Orders of Integration

If we conclude that {Yt} has a unit root (accept H0 : δ = 0 ) it does not necessarily follow that {∆Yt}
is stationary.

∆Yt = β0 + δYt−1 +
p∑

i=1
γi∆Yt−i + ut

Even if δ = 0, it is still possible that
∑p

i=1 γi = 1

Hence {∆Yt} may itself have a unit root.

The Order of integration of {Yt} is the smallest d = {0, 1, 2, . . .} such that
{

∆dYt

}
is stationary, denoted

Yt ∼ I(d)

Estimation

We estimate I(d) by sequential ADF tests:

(1) Test for Unit Root in {Yt} : If reject, then d = 0, else. . .

(2) Test for Unit Root in {∆Yt} : If reject, then d = 1, else. . .

(3) Test for Unit Root in
{

∆2Yt

}
. . .

• Where ∆2Yt = ∆ (∆Yt) = ∆Yt − ∆Yt−1

I(0) : stationary processes

I(1): have stochastic trends, but differences are stationary

I(2) : randomly wandering, even more persistent (smoother) than I(1), but difference twice for stationarity.

We can reasonably approximate:

• I(0) processes by stationary AR models.

• I(1) processes by unit root AR models.
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Spurious Regression vs Co-integration

Spurious Regression

Are {Xt} and {Yt} ‘related’ in any causal or predicative sense?

• If {Xt} and {Yt} are stationary and independent, then OLS consistently estimates a coefficient of zero
on the X’s (hence they are not ‘related’)

When stochastic trends are present, this goes awry however. . .

• Suppose {Xt} and {Yt} are independent random walks

Xt =
t∑

s=1
εx,s

Yt =
t∑

s=1
εy,s

• With mean zero iid innovations (the epsilons are independent and identically distributed), and suppose
that both are I(1) process with no deterministic drift.

• Despite this OLS regression has a systematic tendency to find a statistically significant relationship
between {Xt} and {Yt}

• Given that {Xt} and {Yt} are independent this significant is spurious.

Spurious regression: the systemic tendency to find statistically significant regression relationships between
unrelated I(1) series.

Explanation

Can be due to having the same deterministic drift, but even if they don’t spurious regression still occurs,
usually due to stochastic trends - ‘Random wandering with no tendency to revert to a fixed mean’.

Because stochastic trends exhibit long swings of increase and decline even unrelated I(1) series will tend to
have periods in which they move in the same direction purely by chance.

Finding Spurious Regression

(1) Check that {Xt} and {Yt} are I(1)

(2) Analyse the residuals from ût = Yt − β̂0 − β̂1Xt

If {Xt} and {Yt} are I(1) and unrelated then ût will inherit stochastic trend.

Then ût will be highly serially correlated and will look like an I(1) process.
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Cointegration

We can, however, regress I(1) series on one another if they share common stochastic (and deterministic)
trends.

{Xt} and {Yt} are cointegrated if {Xt} and {Yt} are I(1), and there exists a θ (cointegration coefficient)
such that Yt − θXt ∼ I(0)

This arises because {Xt} and {Yt} share a common stochastic (and deterministic) trend!

Mathematical illustration

Yt =
t∑

s=1
(µ + vs) + wy,t , Xt = 1

θ

t∑
s=1

(µ + vs) + wx,t

Where Yt, Xt ∼ I(1) : both have stochastic trends, and ∆Yt = µ + vt + wy,t − wy,t−1 ∼ I(0) = (their
differences are stationary!)

Yt − θXt =
[

t∑
s=1

(µ + vs) + wy,t

]
− θ

[
1
θ

1∑
s=1

(µ + vs) + wx,t

]
= wy,t − wx,t ∼ I(0)

Implications for OLS

OLS makes sense for co-integration!

min

T∑
t=1

(Yt − a − cXt)2

θ̂ minimises SSR since it removes the trend (approximately).

θ̂
P−→ θ

ξ̂t = Yt − θ̂Xt ≃ Yt − θXt ∼ I(0)

Testing for Cointegration:

(1) Perform ADF test to verify that Yt, Xt ∼ I(1)

(2) If we know the cointegrating coefficient θ

(i) Perform ADF test on ξt = Yt − θXt

(ii) Null of unit root implies ξt ∼ I(1) hence no co-integration
(iii) Reject null then conclude that ξt ∼ I(0) hence co-integrated

(3) If we don’t know the cointegrating coefficient θ

(i) Estimate θ by OLS, hence compute ξ̂t = Yt − θ̂Xt

(ii) Perform ADF test on ξ̂,, USE ENGLE-GRANGER CRITICAL VALUES
(iii) If reject null that ξt ∼ I(1) then conclude co-integrated
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Dynamic Causal Effects

Distributed Lag Regression

Will a regression of Yt on Xt consistently estimate a causal effect?

• We need Yt on Xt to be stationary - though perhaps after transformations.

• If they are I(1) and cointegrated then look at cointegration section.

• We have to ask the usual question: Does OR hold?

– Is cov (Xt, ut) = 0?
∗ What other determinants of Y might be correlated with X?
∗ Is there any simultaneity/reverse causality?

• We MUST include other lags of X itself, since X is correlated with its lags (serially correlated) hence
failing to do so would be an obvious cause of OVB (Omitted Variable Bias).

Yt = β0 + γ0Xt + γ1Xt−1 + γ2Xt−2 + . . . + γrXt−r + ut

– Notice objective here is to estimate causal effect, not to forecast.

Causal interpretation of parameters as dynamic multipliers:

∂Yt+h

∂Xt
=

{
γh if h ∈ {0, 1, . . . , r}
0 otherwise

γ0 : impact effect

• The effect Xt has on Yt immediately

γh : dynamic multiplier

• The effect Xt has on Yt in h periods time

• Or the effect Xt h periods ago has had on Yt

Cumulative dynamic multipliers:

δh = γ0 + γ1 + . . . + γh =
h∑

i=0
γi

The cumulative effect of X, summing over today and next h periods.

Equivalent to effect of a ‘permanent’ change in X, lasting h + 1 periods.
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