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Abstract

These are my Microeconometrics notes made for my finals in 2022. They cover all of the topics. Feel
free to use these notes and pass them on to others. Please note, however, that these have just been made
by a student and not checked over. They likely contain errors, so it will be worth checking things for
yourself. Thanks to Kevin Sheppard and Vanessa Berenguer Rico - these notes are just my interpretation
of their lectures and tutorials.
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Need to Know Theorems

Chebyshev iid LLN

Theorem (Law of Large Numbers by Chebyshev)

For i =1,...,n let z; be independent and identically distributed with finite mean, p, and variance o2. Then,
as n — 0o,

Lindeberg-Levy iid CLT

Theorem (Central Limit Theorem by Lindeberg-Levy)

For i = 1, ...,n let ; be independent and identically distributed with finite mean, p, and variance o2. Then,
as n — 0o,
\/ﬁ(xn — M) & N(O, 1)
ag

Multivariate iid CLT

Theorem (Multivariate Lindeberg-Levy CLT)

Let Z; for i = 1,...,n be independent and identically distributed m-dimensional random vectors with finite
mean vector puz = E[Z;], and finite positive definite covariance matrix Xz = E[(Z; — pz)(Z; — pz)']. Then

VilZi = pz) =2 N(Om, Sz)

where Z, =n~1Y""" | Z; and N(0,,, X7) is multivariate normal.

Slutsky’s Theorem

Theorem (Slutsky Theorem)

Let Y, i> c and X,, £> X, then:

(a) Yo+ X, 2 c+ X

(b) VX, - cX

() Y7IX, 2 e 1X if e #£0
(d) If ¢ = 0 then Y, X,, - 0



Scalar OLS Algebraic Facts

Model
Yi = B+ Pox; + uy

OLS Problem & FOCs

n

argmin(g, g,)cr? Z(yz — B — Pawi)®
i=1
n

Z(yi — B — faxi) =0
=1

Z(yi — 1 — Bowi)zi =0

=1
Solutions
Br =7 b7

S (= D) — D)
o= TS a)

From which, with some basic algebra, we get,

§— b

= (B1 + o7 + 1) — Poi
=B+~ (B2 — P2)T

b

By = > i (i — ) (xi — 7)
D i (T — )2
_ St (B + Bomi 4+ u; — Br — oz — u)(z; — )
i (zi — )2
S0 el = ) + (w1 — )i~ )
Z?=1(xi —2)?
i (zi — ) (u; — 1)
Z?:l(fi — )2
_ S Be(zi — )% 4 (wi — u)(z; — )
Doy (i — @)?
Z?:1(xi — Z)u;
Z?ﬂ(l’i —)?

= B2+

= B2 +

Predicted Values

9i = B + Baxi



Residual

Hence, by construction (FOCs),

Mean

Other Useful Facts

n

1 > (@f + 2% - 2mix) = l[zn: a? +nz? — Q:Eixi]
n i=1 ,rll ijl 17,':n1
= g;xf—i—f—%iﬁ;xi

1 n
==Y af+1° - 22
ni:l

n
1 _
=— E x7 — 1
n
i=1



Scalar Proofs

Introduction

These six types of proofs cover a large part of Part A, and to an extent many of the skills require for Part
B, in the exam. It is therefore really worth your while getting to properly understand them as well as being
able to do them for many different models.

The required proofs are:

1) Finding OLS Estimators

2) Showing Unbiasedness

(1)
(2)
(3) Finding (Conditional) Variance
(4) Proving Consistency

e By Mean Square Convergence (MSC) and directly. Proving by MSC is a huge time saver in exams,
especially if earlier questions have already asked to you find the expectation and variance - why
waste time trying to find the right scaling factor when you can just show that in the limit the
variance is zero.

(5) Finding Asymptotic Distribution
(6) Showing Asymptotic Normality of t-statistic

For all of these proofs I give general pointers - what we are trying to achieve/show - and then an example
proof.

Question for Examples:

These example proofs use a model taken for the 2021 Oxford Econometrics paper, unless stated otherwise.
They focus on the model and distribution,

y; = B +u; where u; ~ independent N(0,{1/2}%) i =1,...,n



Find OLS Estimator

The OLS estimator is the solution to minimising the sum of squared error.

Example Proof:
B = argmin Z(yl - B)?
i=1
FOC,

0=—23 (s B)
=1

Unbiased

Take expectations, looking to show that expectation of estimator is the population parameter.

Properties of Expectations:

Ela+bX +cY]|=a+ bE[X] + cE[Y]

Bl = Bl Y al = 5 3 Blal = i
Elyi| = E[Ely; | 2]
hence, usefully, E[z;u;] = E[E[zu; | z;]] = Elz;Eu; | z;]]

Example Proof:



(Conditional) Variance

Find the variance of an estimator, recall that an estimator is a random variable.

Properties of Variance (and Covariance):

Var(a+bX) = b*Var(X)

Var(ixl ZVar x; +2Z Z Cov(z;, x;)
i=1

i=1 j=i+1
Cov(aX +b,cY +dZ) = aCov(X,Y) + adCov(X, Z) + cCov(b,Y) + dCov(b, Z)
=0 =0

Example Proof:

Var(B) = Var(% Zyl)

i=1

= %Var(nﬁ + Zul)

i=1

= —Var(nﬁ) + Var( Zuz

=1

:n2 ZVar u;) +2Z Z Cov( ul,uj

=1 j=i+1
1

:nQZ ' 2”)

Use online calculators for simplifications of geometric series: symbolab calculator

10


https://www.symbolab.com/solver/simplify-calculator/simplify%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cleft(i%5Cright)?or=input

Consistency

Proving that, in the limit, the estimator tends in probability to the population parameter.

Types of Convergence

It will be useful for this section to understand, to some level, three types of convergence:
(I) AS (Almost Sure)

o A sequence of random scalars {z,,} converges almost surely to p if,

Prob( lim z,, = p) =1
n—r oo
(IT) MS (Mean Square)

o A sequence of random scalars {z,} converges in mean square to p if,

lim E[(z, —p)? =0

n—oo

o The idea behind mean squared convergence is that if z; (a random variable) has an expectation u,
then the sample {z,} converges to y in the limit if the variance of {z,} tends to zero. That is if in
the limit {x, } tends to a constant, that constant must be p.

(III) P (Probability)

o A sequence of random scalars {z,} converges in probability to p if, for any € > 0,

lim Prob(|z, —p| >¢€) =0
n—oo

These types of convergence descend in strength, which means that they each imply the ones below, such
that,
ASC = MSC = PC

In a question on consistency all you need to show is convergence in probability, hence if you can show
MSC (or ASC), you get your answer for free!

Why is this useful?

Because MSC, in my opinion, is often easier to show. All we need to show it for an estimator B is that,

(1) E[B] = B, and;

(2) lim Var(p) =0.

n—oo

Especially if, in prior parts of a question, you have already found the expectation and variance of some B,
all you need to do is state these facts you've already proved and show that in the limit the variance is zero.

11



Example Proof 1: Mean Square Convergence

Recall from earlier that,

. A 1 1
B[] = 5 and Var(3) = -
Prove by showing li_>m Var(8) =0,

2(177)

Example Proof 2: Convergence in Probability

This example considers the estimator of the error variance, again from the 2021 paper

. We are asked to
prove the consistency &2, where,

R 1 P — 7)) (u —a)}?
e PO {Zﬂz(zf_luf)fuxy DY and @, iid N(0,02) , ui ~ iid N(0,0%)

Consider, to begin, the first term:

Multiply by =
n

1 ne no 1
— (ul — 17,)2 = — Z(u? + ﬂ2 — Quiﬂ)
n—2ni:1 n—2711,:1
Notice that,
n 1 n
Z(uf + % — 2ut) = — Zuf u?
i [t
Taking limits of each term,
lim =1
n—oon —

1 n
lim — 2 = Flu?] = o?
Jim 2 uf = Bl =o

1 n
im s = im (— E )2 = (E 1)2 =
nh_>oou - nh—>oo(n — UZ) ( [Ul]) 0

Overall,

n
1 n _ P

n—2n 4
=1

12



Now the second term,

Lon{yi(@i-0)w -2 0 p{Ei@-n)w -0}  n {3305 @-2)(w-u)?

n—2n Yo (o - o) =2 Ly (a-a) =2 IS (2 -a)p
Denominator,

Notice the denominator must tend to some nonzero number such that the fraction is well defined.

n

%Z(M*:E)z: ;ixfﬁ

1 n
lim — fo = E[z?] =02
i=1

n—oon, 4

n—oo

1 n
lim 72 = (— )= (Elz;])? =0
im #* = (3 = (Blei)
1
=N (- 325 o2
n-
USEFUL to note if x; is not mean zero with some specified variance (which often it isn’t),

1 n
lim — me = E[z7]
i=1

n—oomn 4

lim 72 = (% Zmi)Q = (Elzi])?

n— oo

Numerator,

i=1 =1 =1
1« 1« 1«
- Z(m,ul — Tu;) = - Z Tiu; — T— Zul
=1 =1 =1
1 n

1 n
1' r— i = 7E i _—O
nlm $n iglu X [u]

SRS

{— Y (@i —2)(w—w)}* = {0} =0
i=1
USEFUL for products of RVs,

lim ~ 3@ = Blaw] = BB | o)) = BloBlu | 2] = 0

13



Overall,
1 - D -0} 0 {EY (@ — ) — )P

n—2 S (z — )2 T n—2 % ST (01— 7)?
lim -1
n—oomn —
1 < .
lim = (2, —2)2 =0
n—,oon, P

. 1 n ) ,
nlggo{ﬁ ;(z, —ZT)u;}° =0

T {30 (i — @) (u; — @)} p

0
n—2 S (z — z)? X p

Final Answer,

6-2:

n i 2 zn:(uz - 'ZL)2 - 1 {Z:L:l(l'z —)(u; — a)}2 L ,
i=1

14



Asymptotic Distribution

Finding distribution in the limit — they tend to be normally distributed in some way or another!

Convergence in Distribution
Let {x,,} be a sequence of random scalars with CDF F,,, and let X be an RV. If F,,(z) — F(z) as n — oo for

every continuity point x, where F' is the CDF of the random variable X, then x, converges in distribution

to the random variable X, denoted,

D
Ty, — X

Useful Understanding from Kevin Sheppard (2022)
&2 = 1 i(Xl — X)Z = 1 i(ez — €)2
n—1¢4 n—1 p

1 n
6% —o* = Z:(eZ — €)% — 0% Subtract o

1 - n
= Z e? — €2 — 02 Expand square

n
= — Z e? - €2 — o2 Multiply by n
n 1 n

n
n 1 n.o
= — E € — €2 — o Reorder
n

n—1 p n—1
n 1 n 2 2 n 2 2 2 . .
= - (e —0%)— - 0“ Move o” inside and track extra part
n—1n 1 n—1 n—1
n
2 2 n 1 2 2 n_ 2 L »
n(6* — = n— ‘ — —v/n -
Vi(e? —o%) = — {fnZ(q o)} Vi@ — V0
—— i=1
Goes to 1 Goes to 0 Goes to 0

15



Example Proof 1:

A 1 <&
5254‘%2%‘
i=1
~ A 1 1

E[p]) = pand Var(ps) = ﬁ(l - 27)
Sum of normally distributed RVs is normally distributed, hence,
R 1 1
~NB,—=(1-=—
B~ NS 25 (- 50)
-8 _ n(-p _

N(0,1)

JEI-F) Ju-H

n(B~B) ~ N(O, [1 - 5]

n(f — B) 2 N(0,1)

Example Proof 2: OLS

This is a very standard proof of the asymptotic distribution of the OLS estimator and can be found in most
textbooks.

n-! Z?=1(xi —T)u; n=1/2 22;1(931' —T)u;

n 5 = —
Tt (@i =2 et (e - 2)?

V(B -8) =

Denominator,
n

nt Z(xl —7)? £, Var(x;)
i=1
Numerator,

(Use the fact that Efz;] = pz)
n~1/2 Z(ml — T)u; =n~1/? Z(xl — fha — T+ fhy)Uj
i=1 i=1
=n~1/2 Z(xl — o — T+ ) Uy
i=1
=72 ([ — palui — [ = palus)
i=1

n n
=n1/2 Z(% — pg)u; — (T — ,ul.)rfl/2 z:uZ
i=1 i=1
Second term,

(Z — pig)n /2 Z U;
i=1

1
lim (i—ux):{ lim — xi}—usz
n—o00 n—oon 4 7



First term,

n~1/2 Z(:ﬂZ — ) Uy
i=1

E(x; — pz)ui] =0
Var((w: — pa)ui) = Bl(w: — pa)*ui] = El(xi — po)*Elu} | 2] = 0*Var(x,)

n/? Z(% — Ha)Ui 2 N(0,0*Var(z;))
i=1

Overall,
. n Py (@ - Du p N(0,0*Var(zy))

V(B —p) = 1S (2, - 3)2 — Var(z) = N(0,0*Var(x;)"")

V(B —B) 25 N(0,02Var(z;)?)

17



Asymptotic Normally of t-statistic

Just generally a t-statistic is the estimator minus the mean divided by its standard error.

Also note that in finite samples do not use ¢, rather use t,,_j where k is the number of regressors.

Example Proof: OLS
HO : ﬂg =b

t_Bg—b_ Bo—b Bz—b ﬂz—b V(B2 — b)
52_ AN

Vn(
N A= \/ ST \/ D
(B )—>N(O o2Var(x;)™t)
P

S

2

&Z—> Ou
lzn: 2 Py yar(a)
02 ar(x;
A, _ N 2 -1
= Y8 o NOoWarle) ) g g
52 Var(xz;)=!

18



Matrix OLS Algebraic Facts

Model
Y=X8+U
Where,
N 11 Tkl p1 Uy
Y = , X = S U=
Yn T1in Thn Bk Un,

Or equivalently,
Yi = Biz1n + Baxoi + oo+ BrTri +up Vi=1,2,...,n

OLS Problem & FOCs

argmingegr U(B)'U(B) = argminger: (Y — XB) (Y — X )
= argmingepr (Y' = f'X')(Y — XP)
= argmingegs Y'Y — 'X'Y = Y'Xp+ p'X'Xp3
Note that 8’ X'Y = Y’ X3 therefore,
= argmingegs Y'Y —2Y' X3+ /X' X

/
L(@ ﬂU(ﬂ ) _ 2X'Y+2X'X3 =0
/
Here we have used the rules: 8(5;15) = A" and % =(A+ Az

Solutions

B=(X'X)"'X'Y
=B+ X'X)"'X'U

Predicted Values

Y = X3
Therefore,

U=Y -V

Residual

U=Y-Xp
Hence, by construction (FOCs), .
XY+ X'X3=0
X'(Y +XB)=0
X'U=0

19



Other Useful Facts

Projection matrix,
Posn = X(X'X)71X’
Symmetric P = P’ and idempotent P = P?
PX =X

Annihilator matrix,
Mysn=1,—P
Symmetric M = M’ and idempotent M = M?>
MX =0

20



Matrix Proofs

Find OLS Estimator

argmingege U(B)'U(B) = argmingegs (Y — XB) (Y — X )

O0(Ax) A and (' Ax)

€Z €Z

Use the rules:

= (A + A’)x where A is symmetric

Unbiased
Take expectations, looking to show that the expectation of the estimator is the population parameter.

Example Proof: Estimator of the Error Variance

U'v
n—=k

A2
UU =
Where,

U=Y -XB=(I,+X(X'X)"'X")Y = MY
=MY =M(XB+U)=MUsince MX =0

So then,
"M'M M
6%] = v v = UMy recall M is idempotent and symmetric
n—k n—k
Where,

U'U=UMU = tr(UMU) = tr(MUU")
E[U'U | X] = E[tr(MUU") | X] = tr(ME[UU" | X]) = 0%
tr(M) = tr(I, — X(X'X) ' X") = tr(I)) — tr(X'X) ' X'X) = tr(I,) — tr(I) =n — k

So,
E[U'U) = E[E[U'U | X]] = 0% (n — k)
Overall,
E[U'U]  o?3(n—k)
A2 U 2
E[O-U]* n—k n—k =0y

21



Conditional Variance

Take variance or use expectations, both proofs are given below.

Example Proof: OLS Estimator Method 1 - Variance

Var(B | X) = Var(8 — 3| X) since 3 is not random
=Var(X'X)"'X'U | X)
= (X’X)_lX’Var(U | XO){(X' X))~ x"Y
(X120 X E[UU | XX (XX
= (X'X )1XX(XX) ot 1y
(xx)™

/

Var(B | X) =03 (X'X)"!

Example Proof: OLS Estimator Method 2 - Expectations
[(B=B)(B-B)|X]
B(X'X)TX'U{(X'X)"'X'U} | X]
E(X'X)"'X'UU'X(X'X)™" | X]

Var(3 | X)=E

= (X'X)"'X'E[UU" | X]X(X'X)™!
= (X'X)'X'X(X'X)'E[UU" | X]
= (X'X)'E[UU' | X]

—

Var(3 | X) = o3 (X'X)*

22



Consistency

Proving that, in the limit, the estimator tends in probability to the population parameter.

Useful Fact ,
Q = plim

n—roo

X
= E[X;X]]

Example Proof: OLS Estimator

/ =1 5/
3=ﬁ+(X'X)_1X'U=5+(XX> XnU
xX'x\!
(55) =e
n
X'U p
— 0
n
Where,

—1 n
n Zizl T1iUg

1 n
X/U n Zi:l To;U; 1 n
: =n g Xiu;
: =1

n :
nTEY Y i
E[X;u;] = E[X;Eu; | X;] =0
Var(Xiu;) = E[X; X, E[u} | Xi] = o B(X; X;) < o0

23



Asymptotic Normality

These are, in my opinion, the hardest proofs

Example Proof: OLS Estimator

- -(55)" (52)
(X’X)l T

n=1/? 2?21 T1;U;4 Ty
XU | nTVPE 2 2i
= . =n" Z X;u; where X; =
Vin : i=1
2N e Tni

If we can show that the assumptions of the multivariate Lindeberg-Levy CLT hold for X;u; = Z;, assuming
that X;u; is iid, then we can apply it,

E(Xiju) = E[E(Xu; | X)] = E[X;E (u; | )] =0
Var (X;u;) = E [Xjuw; Xi'] = E [uX;X,'] = E[X;X/'E (v;® | X)] = o0*E (X;X,') = 03,Q
Given this, then,

, —1
(52" 2
n
X'U
( \/ﬁ) 2, N {0k, 03Q)

Meaning, overall,
Va(B - B) = N {0k, Q7lot,0Q~"}
Vi(B = B) = N {0x,05Q ")

2
B~ N (ﬁ, UUQ‘l)
n
Asymptotic Normality of t-statistic
Example Proof: OLS Estimator
B — By

- (Bk)  s.e. (Bk) = /52 (X' X))}

~

-1 Ao (X' X))
kk \/UUin ek

Be— By _ VnB—BY) _ V(B —BY)
s.e. (Bk) \/TLA?](X’X)

. B x'x\" T
V(- o) BN, o) o () Dt et Dt
kk

bo-g V(B o, N{0,08Quc} _

5.) /a2 (xx\ 1 [ 2 -1
s.€e. (5k> gU( - )kk ot Qe

24
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Multiple Hypothesis Testing: The F-test

Null Hypothesis

Testing j null hypotheses,
r1181 + rizBet... + 1Bk = @1

721081 + ro2fBa+... + ok Bk = @2

rj1B1 +rjefot... +rifr = q;

Which we simplify to,

11 Tz ... Tik q1
To1 T2 ... T2k q2
R= : , q=
i1 T2 Tjk 4;
Giving,
HO . Rﬁ =dq

For example,
Yi = P1 + Baw2i + B3z + Baxai + BsTsi + wi

Where,
Hy: B2+ B3=1and B4 = 5

01 10 0 1
R_(O 00 1 —1) andq_(o)

Ho:RB=gq

Hence j = 2, and,

Where,

For completeness recall that,

B
0 0) §2 _<051+1ﬁ2+1/33+064+06s)_(ﬁz+ﬁs>
= i

1 ; Ba — Bs
4

B

And so we get the same null hypothesis, that is,
fBa + 53) <1>
RB = — —
P (54 —Bs 0) ~ 1

B2+ B3 =1and B4 = fBs5

011
Rﬂ:(o 00 051 + 082 +- 083 + 154 — 155

Or rather that,
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Test Statistic (Assuming Normality)

Assumptions,

o Full rank (no perfect multicollinearity)

— X is and n X k matrix with rank k&

o (Conditionally) normal errors

Test

Statistic,

(RB — q)'{63 R(X'X)" 'R} *(RB — q)
J

F:

P~ Fj,n—k

Test Statistic (Asymptotic)

Assumptions,

Test

{X,u} is iid
Mean independence,

- E[U|X]=0
Q has full rank &

— Q = plim XX = F[X,;X/] has rank k

n— oo

Homoskedasticity and no autocorrelation

— E[UU' | X] = cl,, where ¢ is a constant

Statistic,

W = (RB - q) {65 RIX'X) 'R} U (RB — q) = jF = &7
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Gauss-Markov Theorem

Scalar GMT

Assumptions

1. Elu; | z1,...,x,] =0
2. Var(u; | 1, ...,0,) = 02 < 0

3. Eluuj | x1,...,xn] =0fori # j

Theorem

OLS estimators (1, B given these properties are BLUE (Best Linear (conditionally) Unbiased Estimators).
That is they have the lowest variance (are the most efficient) out of all other possible estimators.

Start of the Proof

A Z?:l(% — Z)yi _ Z?:l(xi —I) _
A SN Py S P L

PR S Sy (i = 7)
=) w;y; where w; = -
i i=1 i fY (@i - )2

Now we will consider some other estimator Bg where Bg = Z?:l c;y; with ¢; = w; + d where d is some

non-zero difference between ¢; and w;.

From here we need to,

1. Show the conditions for it to be such that S, is unbiased.
2. Calculate the variance of f3s.

3. Show that Var(Bg | 21,y ) > Var(Bg | Z1, .0y Tp).

Matrix GMT

Assumptions

1. No perfect multicollinearity: X is an n x k martic with rank &k (k columns).

« This is important since 3 = (X’X)~'X'Y and Var(3) = ¢2(X'X)~!, and multicollineary implies
that (X’X) is singular (determinant is zero), hence it’s inverse doesn’t exits. So OLS fails.

o Notice that even if there is no perfect multicollinearity, but instead a close linear relationship
among the predictors then (X’X)~! will be huge, hence variance will blow up. We therefore
would be unable to say anything precise about coefficients or do any good inference.

2. Mean independence: E[U | X] = 0.

3. No heteroskedascity/autocorrelation: E[UU’ | X] = 021,.
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Theorem

OLS estimator /3, given these properties, is BLUE (Best Linear (conditionally) Unbiased Estimator).

Start of the Proof

B =AY, where A = (X'X'~1X'.

Suppose another linear unbiased estimator 3 = CY, where C = A+ D and C is a function of X.
Var(B | X) = CC'o?

Var(f| X) = oc*(X'X)"' +o2DD’

Var(3| X)=Var(3 | X)+o2DD’

Then show that DD’ is positive semi-definite to get the appropriate inequality. (A simple proof that for
some matrix A, AA" is PSD from online should suffice.)
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Heteroskedasticity

Suppose that we allow,

E[UU' | X] =0?,Q =%

o3 (X) 0 0
0 o3(X) .. 0
o = ?
0 0 E 0
0 0 . 02(X)

(We have assumed heteroskedasticity but still no autocorrelation here.)

Consequences (finite sample)

e Unbiased

« Different variance: Var(3 | X) = o2 (X'X) ' X'QX (X'X) !
o No longer BLUE (not efficient)

o 6% is biased.

o Inference using 62(X’X)~! may be misleading.

Consequences (large sample)

e V(B -8) 2 N0,03Q7'Q* Q7Y

. AVar(B) = 2£Q1Q*Q !

o Therefore it is consistent and asymptotically normal, but with new variance

e Where, Q* = p lim XX and Q = p lim (X£X) = B[X,X]]
n—oo

n n—> 00 n

Testing: White’s Test

(1) Estimate the Model by OLS and compute OLS residuals
o Oy =y; — Pr — Poxai — Paxai
(2) Run the auxiliary regression
o 0F = a1 + aoma; + a3T3; + Y2x5; + Y323 + V1223 + €
e Here essentially we are asking if the variability of the OLS residual can be explained by the
regressors, if it can then there is heteroskedasticity.

(3) Test the null (homoscedastic) hypothesis,
. HO ;aa2:a3:71:72:73:()
« nR*>~ Xp—1
e n = sample size, R?> = coefficient of determination (of auxiliary regression), p = number of
parameters of the auxiliary regression (in our case p =6, s0 p—1=15)

To run an auxiliary regression one needs all the cross products, so for a bigger model this would be more
like:

") 2 2 2
U = o + a1@i1 + T2 + a3z + 7177, + 225 + V3T5; + 0101502 + 0121, T3i + 0172,T3; + €

Hoial:062:a3:71:72:73:51:52:53
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Dealing with it: Heteroskedastic Robust Standard Errors

N 0’2
Avar(d) = 2L Q™!

NS ' & WA xX'x\ !
AVar(B) = = N axx!
vard) = L (55) (R ex) (%)
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Instrumental Variables

Problem: Endogeneity

Caused by,

o Measurement errors,
e Omitted Variables,

o Simultaneity.
Means that,

o E[U|X]#0 (X tells us something about U)
e Hence OLS estimator is,

— Biased,

— Inconsistent.

Solution (L=K)

This is the solution when Z is an n X L matrix, X isn x K AND L =K.

Conditions

(1) Exogeneity - The instruments are uncorrelated with the error term.

(2) Relevance - The instruments are correlated with the endogenous independent variable.

e Relevance implies the invertibility of the matrix Z’'X.

IV Estimator

Suppose that x3; is exogenous, but we have an instrument for it, I'V;. Therefore let’s replace,

1
X = | w2
T3

with,
1
Zi = | T2
1V;

Exploiting the exogeneity assumption we know that F[Z;u;] = 0 and that u; = y; — X//5.
This means that,
E[Zi(yi — X;B)] =0
E[Zy)]) = BE[Z: X]]
-1
8 ={E1Z:X]]}" ElZuyi

Giving,
Brv = (Z'X)"1(2'Y)
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Asymptotics
Assumptions,

(i) (X[, Z],u}) are iid with finite fourth moments.

(ii) Exogeneity: E[U | Z] =0
(iii) Relevance: Qzx = pnlzlloon_lZ’X is a finite L x X matrix with rank K.
(iv) Qxx = pnlzl)noon_lX'X is a finite positive definite matrix with rank K.
(v) Qzz = pnlﬁv;boonle'Z is a finite positive definite matrix with rank L.
(vi) E[UU" | Z] = o} 1,
Results,
Va(Bry = B) = N(0,03Q7%Q22Q%5)

2
N g _ _
AVar(frv) = 71] Q,%Q22Q%,

AVar(Brv) = 63, (Z2'X) "N (2'2)(X'2)~!

PPN
52 = UnvUrv
Urv n

Solution: 2SLS (L>K)

Now Z’'X is not invertible, since it is not a square matrix (it’s an L x K matrix).

Y=XB+U
X=Za+V

a=(2'2)"'2'X
X=za=22Z'2)"'2'X
Pasrs = (X' X)NX'Y) = {X'2(2'2) ' 2X) X' 2(2'2) 7 2V}

This is most efficient IV estimator

Using same assumptions,
Vi(BasLs — B) = N(0,03(Qx2Q75Q2x) ")

2
AVaT(ﬁAQSLs) = UfU(QXZlezQZX)_I

AVar(Bosps) = 6%, A(X'2)(Z2'2) " (2'X)}

~y ~
A2 _ UQSLSUQSLS
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Non-Linear in Variables
You only can’t use OLS if a model is non-linear in parameters. Therefore,

(A) y; = 0g(x;) + u; - 6 can be estimated by OLS.

o Example: y; = Ak%e% - take logs then estimate 6 by OLS.
(B) yi = g(zi,0) 4+ u; - 0 cannot be estimated by OLS.

o Example: y; = Ak? + u; - cannot estimate 6 by OLS.

Polynomials
Y =B+ BiX + X+ 4 X" +u

We can test how many polynomials we need by using the F-test to test the null of linearity against the rt*
degree polynomial. The r at which we reject the null is how many we need,

Holﬂgz...:ﬁ,.zo

Suppose r = 2 For small changes the causal effect of X on Y is given by,

)4

X B1+ 28X

Logarithms

(1) Linear-Log:
Y = Bo + BilogX +u
AX
AY = p1AlogX =~ [317
“A 1% increase in X has a 0.01 x 31 effect on Y

(2) Log-Linear
logY = o+ 51X +u

AY

“A unit increase of X increases Y by (1 x 100%”. Neat rule: (eﬁ1 — 1) x 100 gives the percentage
change in Y given a change in X.

(3) Log-Log
logY = By + B1logX + u
AY AX AY/)Y
AlogY = 1AlogX = v = 517 =3 = AX/X

“By is the elasticity of Y wrt to X7
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Dummies
(1) Constant
Y:ﬂo+ﬂ1X+BgD+u
If D =1 then the constant is 8y + B2, or Sy when D = 0.

(2) Slope
Y=00+5X+pX-D+u

ﬁlaD:O

Where 2¥. = 3, + 33D =
XTI RD =5 g, D=1

(3) Constant & Slope
Y=0+6/X+08D+BX D+u

In this case the interaction term affects both the constant and the slope.
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Non-Linear in Parameters

We can’t use OLS to estimate coefficients when a model is non-linear in parameters. Below are examples
of such models.

Logistic Curve

1
vi = 1 + e~ (Bi+B2z:) + U

Box-Cox Transformation

A
z; —1

yi=a+ + u;

When,
A=1:y; =a" + Bx; +u;

=1
/\:—1:yi:6¢+B;+ui

A=0:y;, =a+Inz; +u;

CES Production Function

y={6k "+ (1=8) "} 7
Iny = Iny — Sln(5k™ + (1 — 6)I7°) + ¢
P

Coefficient Interpretation
Consider y = g(x,0) with Ely | 2] = g(«,0).

OBy | «]

e Marginal effect: ==~

e Response of average individual: W

T

OE[y | «]

¢ Response of individual with z = x*: ==

T*

e Average response of all individuals: % Dy aEng 2]
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Non-Linear Least Squares (NLLS)

NLLS

Model,
yi = g(wi,0) + u

Where 0 is a k x 1 vector of unknown parameters.

Problem, R
0 = argmin Q,(0)
9co
Qn(0) = > {vi — g(xi,0)}?
i=1
0= ' i — g(xi,0)}°
argmin ;{y 9(z:,0)}
FOC,
. _0Qn(0) N~ R U
@) =55 =22 {vi = 9(2:.0) b(a:.6) = 0
Where §(x;,0) = W

Gauss-Newton Preliminaries
Taylor’s Theorem

An m*" order taylor approximation of f(x) about x¢ and for some ¢ between z and x.

. ) ( e
f(@) ~ f(wo) + f(ff) (x — o) + f(;‘)) (z— 50)* + ...+ %(w — 2" + W(x — ag) (™)
When the remainder is small then,
. ) o
fla) = flao) + L0 (@ ) 1 L0 e gy TGO g

Example Taylor Approximation

First order taylor approximation of f(x) = In(1 + x) about 2o = 0.

Taylor’s Theorem for first order approximation

Hence
1 1

1 ~ 1 —_—
In(l4x) =~ In( +0)+1!1+0

In(l+z)~zx

This is true when the remainder is small, which is the case when z is small since the remainder is given by,

1 1 x2
ot = 3 - (e} = e

And when x is small 2?2 is very small.
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Gauss-Newton Method
Consider,
yi = g(x;,0) +

Where z; and 6 are scalars (for simplicity).

Begin with a first order taylor approximation about some initial estimate of 6, call it é(l).

A

g(xi,0) ~ g(z;, é(l)) + 9(%‘79(1))(9 —01))
Which implies that, . . .

yi = g(wi,001)) + 9(24,001))(0 — 0(1y) + u;
Now we can use NLLS since 6 enters linearly!

~

0(2) = argmin Qn(6)

beo
0(2) = argeTT@wn Z{yl - :Cm 9(1)) - g(I“ 0(1))(9 0(1))}
=1
FOC,
3Qn R
= —22 {yz —9(zi,001)) — §(4,001)) Or2) — 1y )} (z,0(1)) =0

Notice now that 0(2) is our new estimator of 6.

Simplifying the FOC,
= 722 { 9(@i.01y) — 9(i,001)) (O 2) — 9(1))} (z:,001)

0= {i — 9. 00) = (1. 00)) Oz — 0)) (i, By

=1
0= Z {yz - g(iﬂi,éu))}g(%, f1y) — 02 ZQ(JH, f1))? + 0. Z (z:,001))?
=1 =1 i=1
o g St | T — a@ndo) jate o)
2 =)= . -
Zi:1 g(x, 9(1))2 Zz 1 g(wi, 9(1))
R . >ict {yi —9(%9(1))} (i,01))
O2) =0 + T
Sy g, 01)?
Which leaves us with,
R . n R 1 n
02 = b(1) + { > g(wi, 9(1))2} > {y g(i, 9(1>)} (2, 01)
=1 =1
Then iterate until convergence,
n m
. . P
Opr1) =0 + { > 9 0) } {y (ﬂcz,@(p))} (i, 0))
=1 =1
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Maximum Likelihood (ML)

The likelihood function describes the joint probability distribution of the data. It tells us what the probability
is that the distribution parameters are in fact 6 given that we have observed X; = z,...,X,, = z, and

Yo=91,sYn = Yn.

.....

L (0) = l”(Lyl,.--,yn (9))

by (0) = In T ] folyi) =D Infolui)
=1 =1

Example: Bernoulli Random Variable

n
1=

We are trying to estimate what 6 is, given that we have our set of observations of y, { Yi } 1+ To do this we
maximise the probability that 6 equals some 6y given our observations.

Setting up the problem,

(Y1, e yn) iid
Ply;=1)=0, P(yi=0)=(1-90)
0 € (0,1)

PDF,
falys) = 0% (1 — 0)' ¥

Recall that the PDF = probability density function. It gives the probability of a certain event occurring.
For example if we are rolling a 6-sided dice then P(2)=1/6, P(6)=1/6, etc.

Joint distribution and Log-likelihood function,

Since the y’s are iid then,

Folyrs s yn) = folyn) X oo X folya) = [ ] folvs) = Hé”“(l — )i

i=1

Which can be simplified to,
Jo(y1, - yn) = H 9Yi (1 — )Y = 02y vi(] — 9)21;41—%)
i=1

fo(yr, v yn) = 077 (1 = )"0
Notice this is the joint distribution of the data, if in an exam they give you joint distribution then you can

just use that straight away.

Then,
Ly, (0) = {69(1 — )0 =9}"

Lys o (0) = n{gind + (1 — y)in(1 - 6)}

So the likelihood function exactly is the joint distribution of the data. The only difference is that we know
the data values (the y’s) and we don’t know the parameter 6.
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Maximum Likelihood Problem,

Oz, = argmaz n{gind + (1 — y)in(1 - 0)}
0€(0,1)

FOC,

Puoal® 3 1=3 )
Ovr  1—0mL

v _1-y

Orr 1—0ur

Y —Orrny = 0nr — Orrry

Giving the solution,

SOC,

Ply,ya0) [ G5 17
502 =-n n2 ) 2
O3, (1—0mL)

Which for 6 € (0,1) and 0 < g < 1 implies that,

0ly,.....y. (0)

062 <0

So it is certainly a maximum.

Example: Poisson Random Variable

Poisson variables take values 0,1,2,3... and a so are useful for distribution of ‘number of times a person
has been arrested’ or ‘number of children a family has’, etc. For more info on Poisson RVs see the next
section below.

Density,

e 00y
fg(y):T, 0>0,y=0,1,2,3,...

Joint-distribution and Log-likelihood

Assuming iidness,

|
=1 v
e "0y e QY
by @) =0 [ [ == = > tn—g
=1 =1



Maximum Likelihood Problem,

FOC,
Oy,....y, (0) RN
9 1IN — n+ — 5
a0 Ours Z;y
1 n
n == Zyi
Omr i
Solution, R
Omr =19
SOC,
Plyyya ) Y
002 éﬁu

Which is negative for any positive mean of y and any value of 6, hence we have a maximum.

Example: Conditional Poisson Distribution

Model,
yi = "

Where x and 8 are P x 1 vectors.

Probability Density Function,

e—0:(B) {92 (/8)}1/1

o L4 =0,1,2, ..
!

foio) (i | i) =
Given that y is the Poisson distributed variable and that in the case of the explanation of the Poisson
Distribution below 6 is equal to the expectation of the Poisson variable y, we can take the conditional
expectation here to find 6.

Ely | z] = 0:;(8) = e~
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Finding Joint-distribution and Likelihood function,

e~ 0P {p,(B)}vi
I Caa )

Yi!

n o o=0:(8){g,(B)}Y
lyh,,.,y" | T1,.,@n (91(6)) = l?’LH e:iz|(ﬂ)}

i=1

_il O )

f9i(,3)(y1, c Yn | x1, ,xn)
i=1

- Z { — 0:(B)Ine + yilndi(B) — In(y:))}
i=1

lyl,.“,yn | zl,...,ajn Z{ —€ llB + y7ln(e i# ln(yl')}

=Y " {— e +yaip— in(y)}
=1

FOCs,

— yng; 7777 xn(ﬂ)zz{—xe“ﬁ+yz = Z{y—elﬁ}m—O
i=1

We would need to use the Gauss-Newton method to approximate a solution.
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Poisson Random Variables

Let Y be a Poisson RV. The information below is just general info on Poisson RVs should it be needed.

Expectation

The expectation of Y is given by each value Y could take (0,1,2,...) weighted by the probability of that
value occurring.

> = e gy
=> yfoly) = => vy
y=0 y=1 Yy
Notice,
yl=1x2x3x..xy
yl=1x2x3x..x(y—1)x
=[I1x2x3x..x(y—1)]y
yl=(y—Dlxy
So then,
= e Py
BY]=3.
=y -1
> 9y—1)
= e ?
; (y - !
_ -0
=90 Z y!
y=0
e 0 62
= Lty o7 + -
The part in the square brackets is the definition of the exponentlal function, hence,
BIY] = e
ElY]=46
Variance

Var(Y) = E[Y?] — E[Y]?
Already knowing the expectation, consider,

Y2 de o gy iQe o gy iQBGy iy

We can change the limit since when y = 0 the term is zero, hence the sum is unaffected.

o] —0
ElY? = yZ_ly(Z —aly)!
o (1)
=3 Gy
- 99:1 R
— 6—99{ gl(y -1 (Z(U—i))! +§ (f/(y_i))! }



The first term is 0 when y = 1 hence change the limit to y = 2, also notice that (y — 1)! = (y — 2)!(y — 1),

G N T B (2
Ei]=e 99{92(11—2)!*2@—1)!}

y=2 y=1
Finally counting from zero,
EYY =e"% eooey 0
Y] =e > it
y=0 y=0
=e90{0e% + '}
=0*+0

Putting it all together,
Var(Y) =10
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Non-Linear Asymptotics

0 = argmaz Qn(0)
€O

Assumptions

(A) The parameter space O is compact (closed and bounded) (6 € ©)
(B) Qn(0) is continuous in 6 € O (differentiable)
(C) For a non-stochastic function Q(6), uniformly in 6,

Qn(0) 25 Q(0)

and Q(6) achieves a unique global maximum (or minimu for NLLS) at 6.

Consistency

Justification by example: NLLS

= (90 + CCZ‘)Z + u;
Assume:

(i) 6o € [a, 0]
.o . l n —
(ii) JL";‘O n dim1Ti=q

(iii) lim 23" 2?2 =p>¢*

n—oo

(iv) w; ~4id N(0,1)

>

n = argmin — Z {yz 0+ x;) }2

= argmin fZ{ul 90—1—361 (9+$i)2}2

(G0 + )% — (0 + 25)* = 22;(6p — 0) + (62 — 6%)
For condition C:

It can be shown that Q,,(6) —— Q(6) uniformly in 6,

1 n
== S {ui +224(00 — 0) + (02 - 6%)}
=1

P

Qn(0) — Q(0)
Q0) = o2 + (62 — 0*)% + 4p(hy — 0)* + 4q(0% — 6)(0y — 9)

And it can be shown that@Q(#) has a unique global minimum (since this is NLLS and it is a min not a max)
at 90,

Q(0) > ol + (65 — 6) (6 + 0 + 2q)
Hence Q(#) is minimised at 6y = 6.
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Normality

V(0 — 6o)
The solution to optimisation problem are,
n 0) = =
Qn (en) =0

Applying first order Taylor expansion
Qu(0n) = Qu(00) + Qu(60) (6 — 60)

Knowing this is equivalent to zero,
~ . . -1
(0 = 00) ~ Qu(00){ Qul60) |
Vil = 00) ~ VAQu(00){Qu(00)}

Then,
V(0 = 60) 2> N{0, A(60) " B(60) A(60) " }

Justification by example: NLLS

0, = argmin QNS (9)

n

QMO =3 {n @)}

i=1
FOCs

QNP5 (8) = =23 {wi = 9(w1, ) ias, ) = 0
Taylor expansion, ) . . R

QS (0) ~ Q' (00) + Q5 (00) (0 — bo)
SOCs

n n

ONFES(9) =23 4(wis0)? = 23 { i — g1, 0) (i, 0)

i=1 i=1

FOCs and SOCs evaluated at 6,
Q"5 (00) = —2 Z u;ig(@i, o)
i=1

QN5 (00) =2 g(wi 00)* =2 wid(wi, o)
=1 =1

~ . .. -1
The first order Taylor expansion gave (6,, — 0p) =~ Qn(ﬁo){Qn(Oo)} ,
V(B — o) ~ 172 Qi vl bo)
”71{ Doic1 9(wi,00)% = 325 wig(wi, 90)}

N n=s S wig(xi, 0o)
n=ty0  g(wi, 00)?

+ small
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(since the second derivative is small)
Giving the final result as,

n=2 0 wig(wi, 8o)
n=t Z?:l g(x4,00)?

C= pnlirroLon—l zn: {g'(xi,ao)}z >0

i=1

+ small 2 N(0,02C71)
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Binary Choice Models

Used for binary choice,

o Whether a mortgage application is accepted or denied,
e Participate in the labour market or not,

e Doing an MPhil or not.

1 if event A occurs
Dependent variable is binary: y = v ]
0 otherwise

We want to model the probability that y = 1, hence,
Poly =1]z) =G(x,0)
Pyly=0]z)=1—-G(z,0)

Ely | z] = 1xG(x,0) + 0 x (1 — G(z,0)) = G(z,0)

(1) Linear Probability Model:

Pyly=1|2)=G(x,0) =2'0 = 01 + O20 + ... + Opxp,
Unsurprisingly, given the name, G(z, §) is a linear function.

And specifies,
yi =61+ 0o + ... + Oy +u; = 0+ Uy

This is linear in parameters; hence we can use OLS, but the problem with this is:

(1) The model error term is heteroskedastic by construction

o Notice that given y; must be equal to zero or one, that means that x,0 + u; must also always
equal zero or one.

_J—2}0 and P(u; = —xj0) = G(x,0)
N xtf and P(u; =1 —u}f) = 1 — G(z, theta)
o This means that Var(u; | z;) = }6(1 — x}0)
e In other words, the error is conditionally heteroskedastic

(1.1) Gauss-Markov does not apply

(1.2) More efficient estimators exist

(2) The predicted probabilities may not belong to [0, 1], that is §; = #0 ¢ [0,1].
Overcoming problem (2)

e This can be overcome by modelling the actual probabilities so that lgim Py(y=1|z) =1 and
/6 —00

lim Pyly=1|z)=0.
z'f——o0
» But this is achieved by choosing the function Py(y =1 | 2) = G(z, ) to be a distribution function.
That is exactly what probit and logit models do!
o They use normal distribution (probit)

o And logistic distribution (logit)
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(2) Probit & Logit Model:

Generally: Py(y =1|z) = Ely | z] = G(2'0) where G(2'0) is nonlinear.
Probit

z'0
Poly=112)= [ olt)t = 2(a'0

Where ¢ is the standard normal density (PDF) and ® the normal distribution (CDF).
Logit

Poly=1|z) = Tt A(z'0)

Interpretation

(I) General case: Measuring the effect of regressors by marginal effect.

e Where x is a binary variable the effect of changing x5 from zero to one is:
G(91 + 6o + 0323 + ... + Qk.%‘k) — G((gl + 0323+ ... + ek.%‘k)
o Where x is continuous the effect of a small change in z; is:

6E[y | IE] - 8G(91 + 92362 + 93.%3 + ...+ Qkxk)

81‘]' 8]}]‘

(IT) Probit Case
OE[y | x]  d®(2'0) 0(z'0)  dd(2'0)
or;  d(z'0) 0z;  d(z'0)

9j = (25(33/9)9]

o @(2'0) is known as the scale factor.

e This needs to be evaluated at a specific value of x,

OEly =]\ _ , —ipvg.
Tj = ¢(2'0)0;

(ITI) Logit Case
OBy | x]  dA(2') 0(2'0)  dA(2'0)

0z d(z'0) Ox;  d(z'0) J
7 ea:'@(]_ 4 em'@) _ e:r't9ea:'004
B (1 + ex'0)2 J

= A(2'0)(1 — A(2'6))0;

o A(2'6)(1 — A(2'0)) is known as the scale factor.

e This needs to be evaluated at a specific value of x,

OEly | «]

e | = A@0)(1 — AF'0))0;

T
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Estimation

We estimate 6 by Maximum Likelihood, not NLLS as it doesn’t account for heteroskedasticity.

(I) General Case

PDF and Joint Density Function,
1 p\1Yi 1\ 1Y
Py(yi | zi) = [G(«}0)] [ — G(xﬂ)]

P9<y17"'7yn ‘ L1y X H G(xge)]l_yl

=

J

Log-Likelihood Function

i 1—y;
l(y1,~~7yn ‘ ZE17...,$") lnH I‘ 9 . 1 - G(x;@)] Y

Wyt | 21,senns20) (0) = Zyz‘l”[G(xé@)] +> (1= y)in[1 - G(x}0)]
i=1 i=1
Estimator .
Onr = argmax Ly, oy | ar,.2n) (0)
OCRF

FOCs )

Oy, ,.oyn | w1veszn) (0) _ - G () 0 Vg JFZ fG (x}0)x; _

90 7 G(x]0) — G(270)

G(xge) G(xge) ] ‘
) K

aae T G |

3 l

(IT) Probit Case

Hence,

al(y17~--,yn | acl,...,xn)(g) _ - (b(‘/x;,a)
06 =2 ¥

Which gives,

Oty | o) O) zn:w {yi - @(x<9)]xi =0

(ITI) Logit Case

0
eli

G(x;0) = A(z.0) = i

(#:6) = M) =
Hence,
ezie ezis
al soensYn | T1y..05Tn (9) - 1+6$£9 2 1+ew;€ 2
(y15--y 501 ) :Z yi(Té))_(l_%)% 2 =0
" (1+e"i%) (14"

Which gives,

ol ) (0) o
<mw$a7ﬂ>zzprmMm=
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Measure of Fit

Uyr oy | 21,en) (OML)
l(ylwwayn I xla»-wzn) (g)

Z?:l {ylln [G(Qﬁ;éML)] + (1 — yl)ln [1 — G(x;éML)H
nlying + (1 —y;)in(1 - g)]

2 _
RJV]cFadden =1-

2 _
RMcFadden -

Asymptotic Properties

(i [~ AGE® w1
AVar(Oyr = [Z G(/0)(1— G(xéﬂ))}

i=1
Inference
HO : Hj =0
H1 : gj # 0
P
s.e.(6;)
‘Wald Test
Hy:c(0) =¢q
Hy:c(0) #q

(where ¢(.) is possibily non-linear)

A A -1 A
W = {c() - q}/ [AV&T{C(Q) — q}} {c(0) —q}
If the null holds then {c(é) — ¢} should be close to zero. Further this is self-normalising since {c(é) —q}is

divided by its standard deviation.
WA X2

Likelihood Ratio Test

R R L
LR =2{In(Lg) — In(Lyr)} = 2ln| =&
Lur
Here the L’s represent the values of the likelihood function evaluated at the restricted (takes into account
the null) and unrestricted models. If the null holds then the restricted and unrestricted models will be close

to one another and LR will be close to zero.
LR~ X3
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Lagrange Multiplier Test

Hozc(ﬂ):q
Hy:c(0) #q
wag = {20 5y { 2kl |

Where 1 (é r) is the information matrix (expected Hessian matrix of second derivatives).

This test works as if the null hypothesis holds then Or will not be far from the point that maximises the

AlnL(OR)

log-likelihood and hence the score will be close to zero.

LM ~ X?

Note all three tests are asymptotically equivalent (they have the same distribution!)
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Count Data Models

Like Binary choice models except the the variable of interest is a count of the number of occurrences of a
certain event,

o Number of children born in a family,

e Number of times a person has been arrested,

e Number of people surviving past age 100.

In all of these y takes the values 0,1,2,3,. ..

Poisson Regression Model

The Poisson regression model specifies,

E[y | :C] _ 691+92I2+---+9kwk

Predicted values for y are always positive since the exponential function is always positive.

Marginal effect

Binary regressor xs:

Ely|lza=1,...,a] — Ely | 22 = 0,...,xx] = exp(01 + 03 + 0323 + ... + Orxr) — exp(01 + 0325 + ... + Opxy;)

Continuous regressor x;:

E
9Ely | ] = exp(b1 + Oaza + ... + Opx1)0;
8$j

(needs to be evaluated at a given x)

Coefficient interpretation

In(Ely | z]) = 01 + 222 + ... + Oz,

Then,
In(Ely | z1,....zx]) — In(E[y | 21, ..., Bk]) = O (z — Tr) = Ol

This means that 100 x 6, is approximately the percentage change in given a one-unit increase in xg.

In more detail let,

Ely | x1,....,zk] — Ely | 21, ..., T)
Ely | x1, ..., k)
exp(br + Oaxo + ... + Orxr) — exp(01 + Ooxo + ... + OrTk)
exp(0y + Oaxa + ... + Op3y)
exp(0y + Oaxo + ... + Opxy)
exp(b1 + Oaxo + ... + 01Tk)
= exp(OAxy) — 1

ApEly | x| =
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First order Taylor expansion of the exponential function gives,

exp(OxAzxy) =~ exp(0) + ea:i)'(O) (OrAzy, — 0) = 1+ O Axy,

Subbing this back into the change in the conditional expectation gives,

ML Estimation

e 0Py, (B)vi
yi!
Elyi | ) = Var(yi | z:) = 6:(8) = ™

fei(ﬁ)(yi | ;) = where 6;(3) = etiB

And,
yi = "

By the iid assumption,
Lo 0By, (B)yi
e i
f@i(ﬁ)(yla“'ayn \ fl,'-.,xn) = | I 7y4' ( )
i—1 7

1=

Which means that,
"L e 0Bg,(p)v
Ly | a1 (B) = D In—

i=1 yl'
=3 { — 0u(B)ine + yitnti(8) — in(y) }

Given that 6;(8) = e®:8

by | 1 (B) = 2 = 0:(8) + i = In(y) }

We know that R
Bur = argmaz ly, | 21, zn (B)

FOCs,

8ly1,...,yn\xl,...,acn(ﬁ) 1 n w/.,@i ,
- LS = et = o

i=1
Use Gauss-Newton.

Asymptotics
The ML estimator is,

o Consistent,
e Normal,

« Efficient.

« n -1
AVar(B) = {Zexp(xiﬂ)xlx;} which is a k x k matrix.
i=1
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Inference,

e Wald test,
e Likelihood ratio,

o Lagrange multiplier test.
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