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Abstract

These are my microeconomic analysis notes made for my finals in 2022. They cover all topics. Feel
free to use these notes and pass them on to others. Please note, however, that these have just been made
by a student and not checked over. They likely contain errors, so it will be worth checking things for
yourself. Thanks to Ines Morena de Barreda and Miguel Ballester - these notes are just my interpretation
of their lectures and tutorials.
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Linear Algebra

Linear Systems

Definition

A linear system is a system of n linear equations is of the form

a11x1 + . . . + a1nxn = b1

a21x1 + . . . + a2nxn = b2

...
...

...
...

am1x1 + . . . + amnxn = bm

It can be written as:
Ax = ba11 · · · a1n

... . . . ...
an1 · · · amn


x1

...
xn

 =

 b1
...

bm


Solutions

A linear system Ax = b must either have

(1) exactly one solution.

(2) no solutions.

(3) infinitely many solutions.

If the number of equations < number of unknowns,

• Ax = 0 has infinitely many solutions,

• Ax = b for any b has zero or infinitely many solutions,

• If rank(A) = number of equations (rows) then Ax = b has infinitely many solutions for every b.

If the number of equations > number of unknowns,

• Ax = 0 has one or infinitely many solutions,

• For any b, Ax = b has 0, 1, or infinitely many solutions,

• If rank(A) = number of unknowns (columns), then Ax = b has 0 or 1 solution for every b.

If the number of equations = number of unknowns,

• Ax = 0 has one or infinitely many solutions,

• For any given b, Ax = b has 0, 1, or infinitely many solutions,

• If rank(A) = number of unknowns = number of equations then Ax = b has exactly one solution for
every b.

– We call this matrix A non-singular.
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Invertibility

Definition

Matrix A is invertible iff square and non-zero determinant,

A−1 exists iff |A| ≠ 0

Notes

Invertibility is equivalent to having one solution while non-invertibility is equivalent to having no or infinitely
many solutions.

Homogeneity

Definition

When all the bj ’s on the right-hand side are zero,

a11x1 + . . . + a1nxn = 0
a21x1 + . . . + a2nxn = 0

...
...

...
am1x1 + . . . + amnxn = 0

Notes

A homogenous linear system always has at least one solution: x1 = x2 = . . . = xn = 0, known as the trivial
solution.

Ax = 0, with A square has non-trivial solutions iff |A| = 0.

If it has more unknowns than equations then it must have infinitely many solutions. Why?

• Because it always has one solution: x1 = x2 = . . . = xn = 0

• Hence if it doesn’t have enough equations and we have one solution, to have more than one we must
have infinitely many.
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Gaussian & Gauss-Jordan Elimination

Row echelon form

Each row has more leading zeros than the row before it.1 −0.4 −0.3 |130
0 1 −0.25 |125
0 0 1 |300

 ⇒


x1 − 0.4x2 − 0.3x3 = 130
x2 − 0.25x3 = 125
x3 = 300

Reduced row echelon form

Each ‘pivot’ is a one and everything else is a zero.1 0 0 |300
0 1 0 |200
0 0 1 |300

 ⇒


x1 = 300
x2 = 200
x3 = 300

Example: Solve this system of equations via Gauss-Jordan Elimination

w + 4x + 17y + 4z = 38
2w + 12x + 46y + 10z = 98
3w + 18x + 69y + 17z = 153

 ⇔

1 4 17 4
2 12 46 10
3 18 69 17




w
x
y
z

 =

 38
98
153


1 4 17 4 | 38

2 12 46 10 | 98
3 18 69 17 | 153

 R2=R2−2R1−→
R3=R3−3R1

1 4 17 4 | 38
0 4 12 2 | 22
0 6 18 5 | 39


R3=2R3−3R2−→

1 4 17 4 | 38
0 4 12 2 | 22
0 0 0 4 | 12

 →

1 4 17 4 | 38
0 1 3 0.5 | 5.5
0 0 0 1 | 3


R1=R1−4R3−→

R2=R2−0.5R1

 1 4 17 0 26
0 1 3 0 4
0 0 0 1 3

 R1=R1−4R2−→

 1 0 5 0 10
0 1 3 0 4
0 0 0 1 3


w + 5y = 10
x + 3y = 4
z = 3

• We tend to call z : determined; x and w: basic variables; y : free variable.

• Note that it does have to be as neat as this, row one could be the same and then row 2 could be(
0 0 1

)
since that still has more leading zeros than the row above. If a matrix has a row of all

zeros, then all rows below it must be zeros for row echelon form (remember you can swap over rows).

• Also note that the zero matrix is also in reduced row echelon form (with no pivots).
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Rank

Definition

The rank of A is the maximal number of linearly independent rows or columns.

The rank of A is the number of nonzero rows in its row echelon form.

Full Rank

An n × m matrix has full rank iff rank(A) = min{n, m}.

Note it must always be the case that

• rank(A) ≤ n

• rank(A) ≤ m

• rank(A) = rank(AT )

Implications for Linear systems

A system of linear equations with coefficient matrix A and augmented matrix A∗ has solutions iff,

rank(A) = rank(A∗)

Linear independence iff full rank.

Example: Finding Rank

• Reduce to echelon form and see how many rows, or just look and see what the maximum number of
linearly independent rows or column is.

Linear Combination

Definition

A vector x is a linear combination of a collection of vectors x1, x2, . . . , xm in Rn if there exist real numbers
α1, α2, . . . , αm such that x = α1x1 + α2x2 + . . . + αmxm.

Example 1: Show that x is a linear combination u and v

u =

 1
2
3

 , v =

 3
5
7

 , x =

 5
9
13


• x is a linear combination of u and v, since x = 2u + v.
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Linear Independence

Definition

A collection of vectors x1, x2, . . . , xm in Rn is linearly independent if the only scalars α1, α2, . . . , αm such
that, α1x1 + α2x2 + . . . + αmxm = 0 are α1 = α2 = . . . = αm = 0

A collection of vectors x1, x2, . . . , xm in Rn is linearly independent if none of them is a linear combination
of the others.

Notes

This second claim can be shown since if we suppose x1 were a linear combination of the others such that
x1 = α2x2 + ... + αmxm, then if we set α1 = −1 in the equation then, (−1)x1 + α2x2 + ... + αmxm = 0.
This holds for nonzero values of α, hence the set x1, x2, ..., xm is linearly dependent.

It is also useful to know that a set of n vectors x1, x2, . . . , xn in Rn (notice the matrix of these will be
square) is linearly independent iff det (x1x2 . . . xn) ̸= 0. This is the same as the matrix of the vectors being
non-singular as well as invertible.

Further for any set of vectors x1, x2, . . . , xm in Rn (which must produce a n × m matrix), if m > n then the
set of vectors is linearly dependent. (These vectors produce a matrix with more columns than rows, hence
it will have a free variable and thus will have infinitely many solutions, all bar one of which are nonzero.)

Example 1: Show that these are not linearly independent

u =

 1
2
3

 , v =

 3
5
7

 , x =

 5
9
13


• These three vectors are not linearly independent because x is a linear combination of u and v.

Example 2: Show that these are linearly independent

u =

 1
2
3

 , v =

 3
2
9

 , w =

 5
2

−1


• Need to show that ru + sv + tw = 0 only if r = s = t = 0

r

 1
2
3

+ s

 3
2
9

+ t

 5
2

−1

 = 0 ,

 1 3 4 0
2 2 2 0
3 9 −1 0


 1 3 5 0

2 2 2 0
3 9 −1 0

 R2−2R1→R2−→
R3−3R1→R3

 1 3 5 0
0 −4 −8 0
0 0 −16 0

 − 1
4 R2→R2−→

− 1
16 R3→R3

 1 3 5 0
0 1 2 0
0 0 1 0

 R2−2R3→R2−→
R1−3R2−5R3→R3

 1 0 0 0
0 1 0 0
0 0 1 0


• This implies that r = s = t = 0, and hence the vectors are linearly independent.
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Span

Definition

The span of a collection of n-dimensional vectors, x1, x2, . . . , xm, is the set of all their linear combinations,

span [x1, x2, . . . , xm] = {x : x = a1x1 + . . . + amxm}

Notes

We need at least n vectors in order to span Rn.

A collection of n-dimensional vectors, x1, x2, . . . , xm spans Rn iff rank X = (x1, . . . , xm) = n

Intuitively,

• The set spanned by a collection of vectors is all the possible linear combinations of those vectors, that
is all the places we could get to using those vectors.

Basis

Definition

A collection of linearly independent vectors x1, x2, . . . , xm is called basis of Rn if any other vector x ∈ Rn is
a linear combination of these vectors x = α1x1 + α2x2 + . . . + αmxm

Notes

Informally we can say,

(1) A basis of Rn is a linearly independent spanning set for Rn

(2) A basis of Rn is a minimal spanning set for Rn

• Minimal spanning set = if you remove any element from the set then it no longer spans Rn

(3) A basis of Rn is a maximal linearly independent subset of Rn

• Maximal linearly independent subset = add any element of Rn to this set and it will become
linearly dependent

A basis of Rn,

• Must have n vectors,

• The set of vectors must be linearly independent,

• The set of vectors must span Rn.

Example 1: Show that these vectors are a basis for R3

u =

 1
2
3

 , v =

 3
2
9

 , w =

 5
2

−1


• Check for linear independence: need to show that ru + sv + tw = 0 only if r = s = t = 0.
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r

 1
2
3

+s

 3
2
9

+t

 5
2

−1

 = 0 ⇒

 r + 3s + 5t = 0
r + s + t = 0

3r + 9s − t = 0
⇒ r + 3s + 5(3r + 9s) = 16r + 48s = 0 ⇒ 4r + 12s = 0

r + s + (3r + 9s) = 4r + 10s = 0

{
4r + 12s = 0
4r + 10s = 0 ⇒ 2s = 0 ⇒ s = 0 ⇒ r = 0 ⇒ t = 0

• So s = r = t = 0 and hence linearly independent.

• Any linearly independent set of n vectors in Rn spans Rn

• Hence we have a basis for R3

Example 2: Find the basis for the space spanned by these vectors

w1 =

 1
1
0

 , w2 =

 0
1
1

 , w3 =

 2
3
1

 , w4 =

 1
1
1


• Check for linear independence: r1w1 + r2w2 + r3w3 + r4w4 = 0 only if r1 = r2 = r3 = r4 = 0. 1 0 2 1 0

1 1 3 1 0
0 1 1 1 0

 →

 1 0 2 1 0
0 1 1 0 0
0 1 1 1 0

 →

 1 0 2 1 0
0 1 1 0 0
0 0 0 1 0

 →

 1 0 2 0 0
0 1 1 0 0
0 0 0 1 0


 r1 + 2r3 = 0

r2 + r3 = 0
r4 = 0

⇔

 r1 = −2r3
r2 = −r3

r4 = 0
General solution: (r1, r2, r3, r4) = (−2t, −t, t, 0) t ∈ R
Particular solution: (r1, r2, r3, r4) = (2, 1, −1, 0)

• This implies that 2w1 + w2 − w3 = 0 hence linearly dependent, therefore drop any of them.

• Try w1, w2, w4, check for independence: - Could have checked determinant was not zero instead. 1 0 1 0
1 1 1 0
0 1 1 0

 R2−R1→R2−→

 1 0 1 0
0 1 0 0
0 1 1 0

 R3−R2→R3−→
R1−R3+R2→R1

 1 0 0 0
0 1 0 0
0 0 1 0


– This implies linear independence, since r1 = r2 = r4 = 0 is the only solution.

• Conclusion is that w1, w2, w4 is a basis for V, and V = R3

Standard Basis

Standard basis of R2 is
{(

1
0

)
,

(
0
1

)}

Standard basis of R3 is


 1

0
0

 ,

 0
1
0

 ,

 0
0
1


Standard basis of Rn is




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1



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Inverse

Definition

Let A be an K × K square matrix (inversion is only for square matrices), the inverse of matrix A is matrix
A−1 such that A−1A = AA−1 = IK .

Notes

Does not necessarily always exist, but when it does it is unique,

Non-singular iff invertible.

Determinant

Definition
|A| =

∑
k=1

kaik(−1)i+k |Aik|

Where |Aik| is the minor of A.

• i.e. the determinant of the matrix you are left with when you delete row i and column k

Notes

Again this is just for square matrices.

Also note that the determinant is the same no matter which row i you do it for.

Non-singular (Ax = b has exactly one solution for every b) iff determinant is non-zero.

Invertible iff determinant is not zero.

Example 1: Diagonal matrix

• Determinant is just the product of the diagonal entries

Example 2: 2 × 2 matrix
A =

(
a b
c d

)
, |A| = ad − bc
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Eigenvalues

Definition

An eigenvalue of a n-square matrix A is a scalar λ such that A · x = λx.

Notes

Eigenvalues are roots of the characteristic polynomial,

|A − λI| = 0

There are n roots and some may be complex or repeated.

Diagonal entries of a diagonal matrix D are the eigenvalues of D.

A square matrix A is singular iff 0 is an eigenvalue of A.

Example: 2 × 2 square matrix
A =

(
3 1
0 2

)
det(A − λI) =

∣∣∣∣ 3 − λ 1
0 2 − λ

∣∣∣∣ = (3 − λ)(2 − λ) − (0)(1)

(3 − λ)(2 − λ) = 0
λ = 3, λ = 2

Determinant & trace

Let A be a n × n matrix with eigenvalues λ1, λ2, . . . , λn, then,

tr(A) = λ1 + λ2 + . . . + λn

det(A) = λ1 · λ2 · . . . · λn

For 2x2 matrix

det A < 0 eigenvalues have opposite sign,

det A > 0 eigenvalues have the same sign,

• tr(A) > 0 they are all positive,

• tr(A) < 0 they are all negative.
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Eigenvectors

Definition

An eigenvector of an n-square matrix A is an n-dimensional vector x such that A · x = λx.

Notes

We care only about the non-zero eigenvectors since the zero ones are uninteresting.

Or such that (A − λI)x = 0.

Example: 2 × 2 square matrix

A =
(

3 1
0 2

)
λ = 3, λ = 2(

3 1
0 2

)(
x1
x2

)
= 3

(
x1
x2

)
⇒
(

3x1 + x2
2x2

)
=
(

3x1
3x2

)
⇒
(

x1
x2

)
=
(

1
0

)
(

3 1
0 2

)(
x1
x2

)
= 2

(
x1
x2

)
⇒
(

3x1 + x2
2x2

)
=
(

2x1
2x2

)
⇒
(

x1
x2

)
=
(

−1
1

)
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Diagonalizability

Definition

If a matrix has all the eigenvalues real and different, the eigenvectors are independent and span Rn, then by
forming the eigenvectors in columns as V, and denoting D as the diagonalised matrix, we have,

V −1AV −1 = D

A = V DV −1

An = V DnV −1

Quadratic Forms

Two variable case

Q (x1, x2) = a11x2
1 + a12x1x2 + a21x2x1 + a22x2

2

= a11x2
1 + (a12 + a21) x1x2 + a22x2

2

let a12 and a21 be 1/2 (a12 + a21)
then the new a12 and a21 are equal without changing Q (x1, x2)
= a11x2

1 + 2a12x1x2 + a22x2
2

Q (x1, x2) =
(

x1 x2)
)( a11 a12

a21 a22

)(
x1
x2

)
Given the replacement of the a’s in 12 and 21 then the matrix A is symmetric.

Q (x1, x2) =
(

x1 x2
)( a11 a12

a21 a22

)(
x1
x2

)
= x′Ax

Q (x1, x2) and A are:

• PD if Q (x1, x2) > 0 PSD if Q (x1, x2) ≥ 0

• ND if Q (x1, x2) < 0, NSD if Q (x1, x2) ≤ 0.

For all (x1, x2) ̸= 0,

• ID if there exists (x∗
1, x∗

2) , (y∗
1 , y∗

2) such that Q (x∗
1, x∗

2) < 0 and Q (y∗
1 , y∗

2) > 0.

General case

Q (x1, x2) = x′Ax

Q (x1, x2) and A (symmetric) are:

• PD if Q(x) > 0
• PSD if Q(x) ≥ 0
• ND if Q(x) < 0
• NSD if Q(x) ≤ 0

For all x ̸= 0,

• ID if there exists x∗ and y∗ such that Q (x∗) < 0 and Q (y∗) > 0
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Definiteness

Eigenvalue Test

• A is PD iff all its eigenvalues are strictly positive.

• A is PSD iff all its eigenvalues are weakly positive.

• A is ND iff all its eigenvalues are strictly negative.

• A is NSD iff all its eigenvalues are weakly negative.

• A is indefinite otherwise.

Determinant Test

• A is positive definite iff |Ak| > 0 for all k = 1, . . . , n

• A is positive semi-definite iff |Ak| ≥ 0 for all k = 1, . . . , n and all row+col permutations.

• A is negative definite iff (−1)k |Ak| > 0 for all k = 1, . . . , n

• A is negative semi-definite iff (−1)k |Ak| ≥ 0 for all k = 1, . . . , n and all row +col | permutations.

• A is indefinite otherwise.

Where Ak is a square submatrix of A retaining only the first k rows and columns.

A1 = (a11) , A2 =
(

a11 a12
a21 a22

)
,

. . . , Ak =


a11 a12 · · · a1k

a21 a22 · · · a2k

...
... . . . ...

ak1 ak2 · · · akk


Note in the ND and NSD cases the determinants of the submatrices need to oscillate.
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Multivariate Calculus

Continuity

Definition 1

A function f : Rn → Rm is continuous at x if for every ε > 0 there exists a δ > 0 such that, if ∥y − x∥ < δ,
then ∥f(y) − f(x)∥ < ε.

Definition 2

A function f : Rn → Rm is continuous at x if for any sequence {xk}∞
k=1 converging to x, the sequence

{f (xk)}∞
k=1 converges to f(x).

Note the claim is any converging sequence, hence one counterexample proves discontinuity.

Example 1: Epsilon Delta proof

Show that f(x, y) = xy is continuous at (0, 0)

• For any ε > 0 we need to find a δ > 0 such that if ∥(x, y) − (0, 0)∥ = ∥x, y∥ =
√

x2 + y2 < δ then
∥f(x, y) − f(0, 0)∥ = ∥xy∥ = |xy| = |x||y| < ε

• We know that,
|x| =

√
x2 ≤

√
x2 + y2 < δ

|y| =
√

y2 ≤
√

x2 + y2 < δ

• Hence |x||y| < δ2, let δ =
√

ε
|x||y| < (

√
ε)2 = ε

Example 2: Epsilon Delta proof

Show that f(x) =
√

x is continuous at 0

• For any ε > 0 we need to find a δ > 0 such that if ∥(x) − (x0)∥ < δ then ∥f(x) − f (x0)∥ =∥∥√
x − √

x0
∥∥ < ε

• We know that we have an ε > 0 and we need a delta

• We know that |x − 0| < δ and we want it to imply that ∥f(x) − f(0)∥ = |
√

x −
√

0| =
√

x < ε or x < ε2

• So if we choose δ = ε2 we should be able to prove it.

• Let ε > 0 and δ = ε2. When |x − 0| = |x| < δ then we have |
√

x −
√

0| =
√

x <
√

δ =
√

ε2 = ε

Example 3: Proving sum, subtraction, and product are continuous

• Let f and g be functions from Rn to Rm that are continuous at x. Then f + g, f − g, f · g (inner
product) are all continuous at x.

• Let {xn}∞
n=1 be a sequence converging to x. By continuity f (xn) converges to f(x), and g (xn)

converges to g(x). f (xn) + g (xn) = (f + g) (xn) converges to f(x) + g(x) = (f + g)(x) therefore f + g
is continuous at x
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Differentiation

Partial Derivative

Consider a real valued function f : Rn → R.

The kth partial derivative of f at x ∈ Rn is

∂f

∂xk
(x) = lim

h→0

f(x1, ..., xk + h, ..., xn) − f(x1, ..., xn)
h

Other notion:
∂f

∂xk
(x) = fk(x) = fxk

= ∂xk
f = ∂kf = Dkf

Young’s Theorem

Let f : Rn → R. If ∂i∂jf and ∂j∂if exist and are continuous then

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
for i, j = 1, ..., n

Differentiability

The function f : Rn → Rm is differentiable at x if there exists an m × n matrix A such that

lim
||h||→0

||f(x − h) − f(x) − Ah||
||h||

= 0

This might be less confusing in the univariate case: f : R → R. If f ′(x) is to exist then it must be the case
that

f ′(x) = lim
h→0

f(x − h) − f(x)
h

0 = lim
h→0

f(x − h) −
[
f(x) + hf ′(x)

]
h

Sufficient Conditions

A function f is differentiable at x if all the partial derivatives of f exist in th neighbourhood of x and are
continuous at x.

A function f is differentiable at x if f is C1: all its partial derivatives exist and are continuous at all points
of its domain.
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Jacobian

If f : Rn → Rm where f = (f1, ..., fm), we define the Jacobian matrix as the m × n matrix Df(x), where

Df(x) =

∂1f1 ... ∂nf1
... . . . ...

∂1fm ... ∂nfm

 =


∂f1
∂x1

... ∂f1
∂xn... . . . ...

∂fm

∂x1
... ∂fm

∂xn


In the case when f : Rn → R then the Jacobian matrix is the 1 × n matrix

Df(x) =
(
∂1f ... ∂nf

)
We call the transpose of this matrix in the real-valued function case the gradient matrix

∇f =

∂1f
...

∂nf


Example:

f(x, y) = (xy , x2 + y2)

Df(x, y) =
(

y x
2x 2y

)
Example:

f(x, y) = (x2y + y2x)
Df(x, y) =

(
2xy + y2 x2 + 2yx

)
Example:

f(x, y) = (xy2)

∇f =
(

y2

2xy

)

Hessian

The second-order partial derivatives can be written as a matrix,
∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


Providing that the function f is C2 (all partial derivatives exist and are continuous at all points in the
domain) the matrix is symmetric.

Example:
f(x, y) =

(
x2y + y2x

)
Df(x, y) =

(
2xy + y2x2 + 2yx

)
H =

(
2y 2x + 2y

2x + 2y 2x

)
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Chain Rule

Let f : Rn → R and x : Rm → Rn be C1 functions. Define z : Rm → R such that z(t) = f(x(t)), then z is a
C1 function, and,

∂z

∂tk
= ∂f

∂x1

∂x1

∂tk
+ ∂f

∂x2

∂x2

∂tk
+ . . . + ∂f

∂xn

∂xn

∂tk
for 1 ≤ k ≤ m

Example:
f(x, y) = x2 + y, x(s, t) = s + t, y(s + t) = s2 + t2

∂z

∂s
= 2x · 1 + 1 · 2s = 2x + 2s = 2(s + t) + 2s

= 4s + 2t

∂z

∂t
= 2x · 1 + 1 · 2t = 2x + 2t = 2(s + t) + 2s

= 4t + 2s

Total Differential

Let f : Rn → R be a C1 function. If there is an infinitesimal change dx in x, the corresponding change in f
is given by the total differential,

df = ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + . . . + ∂f

∂xn
dxn or df = Df · dx

Example:
f(x, y) = x2y + y2x,

df = ∂f

∂x
dx + ∂f

∂y
dy

df =
(
2xy + y2) dx +

(
x2 + 2yx

)
dy
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Taylor Approximations

Taylor’s Theorem

First Order

Suppose f : U → R, where U is an open subset of Rn, is a C1 function. Then for any a, x ∈ U

f(x) = f(a) + Df(a)(x − a) + R1(x, a)

where lim
x→a

R1(x, a)
∥x − a∥

→ 0

Second Order:

Suppose f : U → R, where U is an open subset of Rn, is a C2 function. Then for any a, x ∈ U

f(x) = f(a) + Df(a)(x − a) + 1
2(x − a)T D2f(a)(x − a) + R2(x, a)

where lim
x→a

R2(x, a)
∥x − a∥2 → 0

Example:

Find a Taylor approximation of z = f(x, y) at (a, b)

(1) First order:
f(x, y) = f(a, b) + ∂f

∂x
(a, b)(x − a) + ∂f

∂y
(a, b)(y − b) + R1

(2) Second order:

f(x, y) =f(a, b) + ∂f

∂x
(a, b)(x − a) + ∂f

∂y
(a, b)(y − b)

+ 1
2

[
∂2f

∂x2 (a, b)(x − a)2 + 2 ∂2f

∂x∂y
(a, b)(x − a)(y − b) + ∂2f

∂y2 (a, b)(y − b)2
]

+ R2

Example:

Find a Taylor approximation of z = x2y + y2x at (1, 2) where

Dz =
(
2xy + y2 x2 + 2yx

)
H =

(
2y 2x + 2y

2x + 2y 2x

)
First order:

f(x, y) = f(a, b) + ∂f

∂x
(a, b)(x − a) + ∂f

∂y
(a, b)(y − b) + R1

z =
{

122 + 221
}

+
{

2(1)(2) + 22} (x − 1) +
{

12 + 2(2)(1)
}

(y − 2) + R1

z = 6 + 8(x − 1) + 4(y − 2) + R1

Second order:

f(x, y) = f(a, b) + ∂f

∂x
(a, b)(x − a) + ∂f

∂y
(a, b)(y − b)

+ 1
2

[
∂2f

∂x2 (a, b)(x − a)2 + 2 ∂2f

∂x∂y
(a, b)(x − a)(y − b) + ∂2f

∂y2 (a, b)(y − b)2
]

+ R2

z =
{

122+ 221
}

+
{

2(1)(2) + 22} (x − 1) +
{

12 + 2(2)(1)
}

(y − 2)

+ 1
2
[
2(2)(x − 1)2 + 2(2(1) + 2(2))(x − 1)(y − 2) + 2(1)(y − 2)2]+ R2

z = 6 + 8(x − 1) + 4(y − 2) + 1
2
[
4(x − 1)2 + 12(x − 1)(y − 2) + 2(y − 2)2]+ R2

22



Implicit Function Theorem

If it is the case that the equation F (x, y) = 0 has a solution y∗ for a particular x∗, and we want to
know how y∗ changes with x∗, then rather than finding each x∗ and it’s corresponding y∗, we can think of
y implicitly as a function of x.

Univariate Case

Definition

Suppose x ∈ Rm, and (x∗, y∗) is a solution to F (x, y) = 0. Suppose that F is C1 in an open ball around
(x∗, y∗), with ∂F

∂y (x∗, y∗) ̸= 0. Then there is a C1 function y = y(x) defined in an open ball around x∗ such
that

y(x∗) = y∗

F (x, y(x)) = 0

∂y

∂xi
(x, y) = −

∂F
∂xi

(x, y)
∂F
∂y (x, y)

Notes

This essentially says if F (x, y) = 0 has a solution y∗ for a particular x∗, then it is legitimate to think of y as
a function of x around that point, and therefore you can determine how y changes from y∗ when x changes
a little from x∗ by implicitly differentiation.

Example:

Consider the equation x2 + y2 = 10 with a solution at x = 3 and y = −1. Find dy
dx at this point.

• Define F (x, y) = x2 + y2 − 10, hence (3, −1) is a solution to F (x, y) = 0

(1) Check F (x, y) = x2 + y2 − 10 is C1 :

• ∂F
∂x (x, y) = 2x, which is continuous,

• ∂x
∂y (x, y) = 2y, which is continuous,

• Hence F is C1.

(2) Check that ∂F
∂y (x∗, y∗) ̸= 0

• ∂F
∂y (3, −1) = 2(−1) = −2 ̸= 0

• Conclusion: there exists a y = y(x) such that

(1) y(3) = −1

(2) F (x, y(x)) = 0

(3) ∂y
∂x (x, y) = −

∂F
∂x (x,y)
∂F
∂y (x,y)

• Giving dy
dx = − 2x

2y = − x
y = 3 (at the solution).

Note the IFT does not say that y(x) is the only solution to the equation for a given value of x, but rather
that it is the only solution near (3, −1)
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Multivariate Case

Definition

Consider F : Rm+n → Rn. Suppose that F (x∗, y∗) = 0 and that each Fi is C1 around (x∗, y∗),
and DyF is invertible at this point (x∗, y∗). Then, there exists a collection of C1 functions y(x)
[y1(x1, ..., xn), ..., ym(x1, ..., xn)] such that,

y(x∗) = y∗

F (x, y(x)) = 0
Dxy(x) = − [DyF (x, y(x))]−1

DxF (x, y(x))

Find partials by 
∂F1
∂y1

∂F1
∂y2

· · · ∂F1
∂yn

∂F2
∂y1

∂F2
∂y2

· · · ∂F2
∂yn

...
... . . . ...

∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn




∂y1
∂xj
∂y2
∂xj

...
∂yn

∂xj

 = −


∂F1
∂xj
∂F2
∂xj

...
∂Fn

∂xj




∂y1
∂xj

...
∂yn

∂xj

 = −




∂F1
∂y1

· · · ∂F1
∂yn

... . . . ...
∂Fn

∂y1
· · · ∂Fn

∂yn




−1
∂F1
∂xj

...
∂Fn

∂xj


Notes

Consider a system of n equations with n + m variables

F1(x1, x2, . . . , xm; y1, y2, . . . , yn) = 0
F2(x1, x2, . . . , xm; y1, y2, . . . , yn) = 0
. . .

Fn(x1, x2, . . . , xm; y1, y2, . . . , yn) = 0

These equations implicitly define yi as a function of (x1, . . . , xm). We can hence generalise the Implicit
function theorem to see how yk changes with xj

Implicitly differentiating the ith equation gives:

∂Fi

∂xj
+ ∂Fi

∂y1

∂y1

∂xj
+ ∂Fi

∂y1

∂y1

∂xj
+ . . . + ∂Fi

∂y1

∂y1

∂xj
= 0

And 
∂F1
∂y1

∂F1
∂y2

· · · ∂F1
∂yn

∂F2
∂y1

∂F2
∂y2

· · · ∂F2
∂yn

...
... . . . ...

∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn


(

∂y1
∂xj
∂yj

∂xj

)
=


∂F1
∂xj

... ∂F2
∂xj

...
∂Fn

∂xj


Which has a solution if the Jacobian is non-singular.
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Unconstrained Optimisation

Throughout this section we are considering f(x): a real valued function (n arguments but 1 value outputted)
which is C2, hence we have

Df =
(

∂f
∂x1

... ∂f
∂xn

)
, D2f =


∂2f
∂x2

1
... ∂2f

∂x1∂xn

... . . . ...
∂2f

∂xn∂x1
... ∂2f

∂x2
n



Weierstrass Theorem

A continuous real valued function f : S → R, where is S is a compact subset of Rn attains a maximum and
a minimum value.

First Order Conditions (FOCs)

If f has a local maximum or minimum at an interior point x∗ of S, then,

Df (x∗) = 0

Second Order Conditions (SOCs)

Suppose that x∗ is an interior point of S and that Df (x∗) = 0.

Second Order Necessary Conditions

• If f has a local maximum, at an interior point x∗ of S, then D2f (x∗) is negative semidefinite.

• If f has a local minimum, at an interior point x∗ of S, then D2f (x∗) is positive semidefinite.

Second Order Sufficient Conditions

• If D2f (x∗) is negative definite, then x∗ is a strict local maximum.

• If D2f (x∗) is positive definite, then x∗ is a strict local minimum.

• If D2f (x∗) is indefinite, then x∗ is a saddle point.

Checking the definiteness of a symmetric matrix A

(A) Eigenvalue test

• A is positive definite iff all its eigenvalues are strictly positive.
• A is positive semi-definite iff all its eigenvalues are weakly positive.
• A is negative definite iff all its eigenvalues are strictly negative.
• A is negative semi-definite iff all its eigenvalues are weakly negative.
• A is indefinite otherwise.
• https://www.symbolab.com/solver/matrix-eigenvalues-calculator
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(B) Determinant test

• A is positive definite iff |Ak| > 0 for all k = 1, . . . , n.
• A is positive semi-definite iff |Ak| ≥ 0 for all k = 1, . . . , n and all row+col permutations.
• A is negative definite iff (−1)k |Ak| > 0 for all k = 1, . . . , n.
• A is negative semi-definite iff (−1)k |Ak| ≥ 0 for all k = 1, . . . , n and all row+col permutations.
• A is indefinite otherwise.
• https://www.symbolab.com/solver/matrix-determinant-calculator

Examples

• The leading minors of A =
(

5 4
4 11

)
are 5 and (55 − 16) = 39, so A is positive definite.

• The leading minors of A =
(

−1 0
0 −2

)
are −1 and 2, so A is negative definite.

• The leading minors of A =
(

−1 0
0 4

)
are −1 and −4, so A is indefinite.

Global Optima for concave functions

In the case of concave functions, stationary points are automatically global maxima.

Let f be a C2 function defined on a convex set S : - D2f is positive definite for all x in S ⇒ f is strictly
convex on S.

• D2f is positive semi-definite for all x in S ⇔ f is convex on S.

• D2f is negative definite for all x in S ⇒ f is strictly concave on S.

• D2f is negative semi-definite for all x in S ⇔ f is concave on S.
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Unconstrained Optimisation: Example

Find all the local maxima and minima of f(x, y) = x3 + y3 − 3x − 3y + 3xy

Does the global maximum or minimum exist?

FOCs

For a real valued function: Df(x) =
(

∂f
∂x1

. . . ∂f
∂xn

)
Df(x, y) =

(
∂f
∂x

∂f
∂y

)
=
(
3x2 − 3 + 3y 3y2 − 3 + 3x

)
Solution is at Df (x∗, y∗) = 0

3x2 − 3 + 3y = 0 ⇒ x2 − 1 + y = 0 ⇒ y = 1 − x2

3y2 − 3 + 3x = 0 ⇒ y2 − 1 + x = 0(
1 − x2)2 − 1 + x = 0 ⇒ (1 − x)(1 + x)(1 − x)(1 + x) − (1 − x)

⇒ (1 − x)
{

(1 + x)2(1 − x) − 1
}

⇒ (1 − x)
{(

x2 + 2x + 1
)

(1 − x) − 1
}

⇒ (1 − x)
{((

x2 + 2x + 1
)

− x
(
x2 + 2x + 1

))
− 1
}

⇒ (1 − x)
{

x2 + 2x + 1 − x3 − 2x2 − x − 1
}

⇒ (1 − x)x
{

x + 2 − x2 − 2x − 1
}

⇒ (1 − x)x
{

1 − x − x2}
Hence we have four solutions that meet the FOCs

(A) x = 1, y = 0 (C) x = y = −1+
√

5
2

(B) x = 0, y = 1 (D) x = y = −1−
√

5
2

SOCs

D2f(x, y) =
(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=
(

6x 3
3 6y

)
For each solution:

(A) (1, 0) ⇒ H =
(

6 3
3 0

)
⇒ |H1| = 6 > 0 and |H| = (6 · 0 − 3 · 3) = −9 < 0 ⇒ indefinite ⇒ saddle

point.

(B) (0, 1) ⇒ H =
(

0 3
3 6

)
⇒ |H1| = 0 and |H| = (0 · 6 − 3 · 3) = −9 < 0 ⇒ indefinite ⇒ saddle point.

(C)
(

−1+
√

5
2 , −1+

√
5

2

)
⇒ H =

(
3(−1 +

√
5) 3

3 3(−1 +
√

5)

)
⇒ |H1| = 3(−1 +

√
5) > 0 and |H| =(

9(−1 +
√

5)2 − 3 · 3
)

= 9(6 − 2
√

5 − 1) = 9(5 − 2
√

5) > 0 ⇒ positive definite ⇒ strict local minimum.

(D)
(

−1−
√

5
2 , −1−

√
5

2

)
⇒ H =

(
3(−1 −

√
5)

3 3(−1 −
√

5)

)
⇒ |H1| = −3(1 +

√
5) < 0 and |H| =(

9(1 +
√

5)2 − 3 · 3
)

= 9(6 + 2
√

5 − 1) = 9(5 + 2
√

5) > 0 ⇒ negative definite ⇒ strict local maximum.
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Constrained Optimisation: Equality Constraints

Maximise f(x) = f (x1, . . . , xn) subject to h(x) = a, h1 (x1, . . . , xn) = a1, . . . , hm (x1, . . . , xn) =
am [h : Rn → Rm]

Lagrange’s Theorem FOCs

Let,

L(x, λ) = f(x) −
m∑

j=1
λj (hj(x) − aj)

DxL(x, λ) = Df(x) −
m∑

j=1
λjDhj(x)

If x∗ is a local maximum of f subject to the constraints h(x) = a and the matrix Dh(x∗) is of full rank m,
then there exists a λ∗ = (λ∗

1, . . . , λ∗
m) such that,

DxL (x∗, λ∗) = 0

Constraint Qualification

“Dh(x∗) is of full rank m” is known as the constraint qualification (CQ).

Recall that,

h(x) =


h1(x)
h2(x)

...
hm(x)

 and Dh =


∂h1
∂x1

· · · ∂h1
∂xn... . . . ...

∂hm

∂x1
· · · ∂hm

∂xn



Lagrange’s Theorem SOCs (sufficient conditions)

Suppose that (x∗, λ∗) satisfies the CQ and FOCs, then:

(a) If vT D2
xL (x∗, λ∗) v < 0 ∀v ̸= 0 in Rn for which Dh (x∗) v = 0 then x∗ is a strict local maximum.

(b) If vT D2
xL (x∗, λ∗) v > 0 ∀v ̸= 0 in Rn for which Dh (x∗) v = 0 then x∗ is a strict local maximum.

Borderer Hessian Test (Checking for the SOCs)

Construct the bordered Hessian: (
0 Dh (x∗)

Dh (x∗)T
D2

xL (x∗, λ∗)

)
Check the sign of the last n − m leading principal minors:

(a) If they alternate in sign ending with (−1)n then H is negative definite
[
vT Av < 0 ∀v ̸= 0

]
and x∗ is a

strict local maximum.

(b) If they have the same sign as (−1)m then H is positive definite
[
vT Av > 0 ∀v ̸= 0

]
and x∗ is a strict

local minimum.
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Notes

Where n is the number of arguments (x’s and y’s), and m is the number of constraints.

If n − m = 0 then you have nothing to check!

Example: Bordered Hessian

f(x1, x2, x3, x4) = x2
1 − x2

2 + x2
3 + x2

4 + 4x2x3 − 2x1x4) on x2 + x3 + x4 = 0 and x1 − 9x2 + x4 = 0

Given that n = 4 and m = 2 we need to check the last n − m = 2 principals: H5, H6 where,

H6 =


0 0 0 1 1 1
0 0 1 −9 0 1
0 1 1 0 0 −1
1 −9 0 −1 2 0
1 0 0 2 1 0
1 1 −1 0 0 1



H5 =


0 0 0 1 1
0 0 1 −9 0
0 1 1 0 0
1 −9 0 −1 2
1 0 0 2 1


Given that n = 4 and that (−1)4 > 0 we would need |H6| > 0 and |H5| < 0 to verify negative definiteness.

Given that m = 2 and that (−1)2 > 0 we would need |H6| > 0 and |H5| > 0 to verify positive definiteness.

In fact the determinant of H6 = 24 and H5 = 77 hence f is positive definite and x∗ is a local minimum.
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Equality Constraint: Example

min rK + wL (r > 0, w > 0) s.t. K1/2L1/2 = y > 0 ⇒ KL = y2 since K > 0 , L > 0

Weirestrass Theorem

The constraint set is not compact hence we cannot call on the Weirestrass theorem.

Constraint Qualification

Dh = (LK) ̸= 0 because K > 0 and L > 0.
This implies full rank because as long as this matrix is nonzero it has full rank.

Lagrangian & FOCs

L(K, L, λ) = rK + wL − λ
(
KL − y2)

FOCs
r − λL = 0
w − λK = 0

KL = y2

λ = r

L
= w

K
> 0, so y2 = K2r

w
= L2w

r

Hence,
K∗ = y(w/r)1/2 , L∗ = y(r/w)1/2

Evaulate and Compare

If you know a global maximum exists (by the Weirestrass Theorem), then evaluate f at the points which
satisfy the FOCs and at which one f is largest.
We do not know this in our case, hence we need to check the Bordered Hessian instead.

Bordered Hessian

If you do not know a global maximum exists, use Bordered Hessian to check SOCs.
Bordered Hessian:

H =

 0 L K
L 0 −λ
K −λ 0


This is because DK,LL =

(
r − λL
w − λK

)
, D2

K,LL =
(

∂
∂K (r − λL) ∂

∂L (r − λL)
∂

∂K (w − λK) ∂
∂L (w − λK)

)
=
(

0 −λ
−λ 0

)
How many of the last leading principle minors should we check?

• n = 2 (we have two variables), m = 1 (one constraint)

• Hence n − m = 1,

• So we only need to check the last leading principle minor, in other words the sign of det(H)

|H| = 0(0 · 0 − (−λ)(−λ)) − L(L · 0 − (−λ)K) + K(L · (−λ) − 0 · K) = −2λKL < 0
The sign coincides with the sign (−1)m

Hence positive definite hence local minimum.
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Global?

If we let c∗ be the cost of using K∗ and L∗,

c∗ = rK∗ + wL∗ = 2y(rw)1/2

And define K̄, L̄, by rK̄ = c∗, wL̄ = c∗, using K ≥ K̄, L ≥ L̄, then to produce y would cost more than c∗(y)
and could not therefore be optimal.

Hence K ≤ K̄, L ≤ L̄, but these constraints do not bind so local minimum is a global minimum.

31



Constrained Optimisation: Inequality Constraints

max f(x) = f (x1, . . . , xn) subject to
g(x) ≤ b : g1 (x1, . . . , xn) ≤ b1, . . . , gk (x1, . . . , xn) ≤ bk

[
g : Rn → Rk

]
Maximisation vs Minimisation

For maximisation problems it MUST be the case that constraints are written as less than or equal to zero,
that is g(x) − b ≤ 0.

For minimisation problems it MUST be the case that constraints are written as greater than or equal to zero
that is b − g(x) ≥ 0.

Kuhn Tucker’s FOCs

Suppose now for one constraint we have the Lagrangian,

L(x, λ) = f(x) −
m∑

j=1
λj (gi(x) − bj)

DxL(x, λ) and D2
xL(x, λ)

Suppose x∗ is a local maximum of f subject to the constraint g(x) ≤ b and the constraint qualification is
satisfied at x∗. Then there exists λ∗ = (λ∗

1, . . . , λ∗
m) such that,

DxL (x∗, λ) = 0
λ∗

j ≥ 0 and λ∗
j (gj (x∗) − bj) = 0 for j = 1, . . . , m

Obviously for inequality constraints you don’t have to impose that the constraints bind (which are focs for
equality constraint optimisation)

Rather here we have complementary slackness conditions.

Complementary Slackness Conditions

λj ≥ 0 and λ∗
j (gj(x∗) − bj) = 0 for j = 1, ..., m

(1) λj for all j is non-negative as an agent only needs to be penalised if she wishes the constraint to exceed
b (for it to be the case that gj(x) > bj).

(2) Note that if gj(x∗) < bj , then, λj = 0.

That is λj is only positive if the jth constraint is satisfied with equality.

These conditions allow for,

(1) Interior optima
λ∗

j = 0 ∀j so DxL(x∗, λ∗) = Df(x∗) = 0

(2) Constrained optima
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Constraint Qualification

Let gE be all the constraints which bind x∗, and e be the number of binding constraints. The constraint
qualification is satisfied if the matrix DgE (x∗) is of full rank e.

DgE (x∗) =


∂g1
∂x1

(x∗) . . . ∂g1
∂xn (x∗)

... . . . ...
∂ge

∂x1
(x∗) . . . ∂ge

∂xn
(x∗)



Kuhn Tucker’s SOCs

Suppose (x∗, λ∗) satisfy the constraint qualification and the FOCs,

(1) If some constraints bind

• If some of the constraints gE bind at x∗ and vT D2
xL (x∗, λ∗) v < 0∀v ̸= 0 in Rn for which DgE (x∗) v =

0 then x∗ is a strict local maximum.

• Check via Bordered Hessian (
0 DgE(x∗)

DgE(x∗)T D2
xL(x, λ∗)

)
• Check the sign of the last n − e leading principal minors:

(a) If they alternate in sign ending with (1)n then Q is negative definite
[
vT Av < 0∀v ̸= 0

]
and x∗ is

a local maximum.
(b) If they have the same sign as (1)e then Q is positive definite [ vT Av > 0∀v ̸= 0

]
and x∗ is a local

minimum.

(2) If no constraints bind

• If no constraints bind at x∗ and vT D2
xL (x∗, λ∗) v = vT D2

xf (x∗) v < 0∀v ̸= 0 in Rn (is negative definite)
then x∗ is a strict local maximum. (CHECK NORMAL HESSIAN IF NONE BIND)
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Constrained Optimisation: Equality & Inequality Constraints

max f(x) = f (x1, . . . , xn) subject to
h(x) = a , h1 (x1, . . . , xn) = a1, . . . , hm (x1, . . . , xn) = am [h : Rn → Rm]
g(x) ≤ b , g1 (x1, . . . , xn) ≤ b1, . . . , gk (x1, . . . , xn) ≤ bk

[
g : Rn → Rk

]
Kuhn Tucker’s FOCs

Our Lagrangian and first and second order conditions are given by,

L(x, λ, µ) = f(x) −
m∑

j=1
λj (hj(x) − aj) −

k∑
j=1

µj (gj(x) − bj)

DxL(x, λ, µ) and D2
xL(x, λ, µ)

If x∗ is a local maximum of f on S, and CQ holds, then x∗ is a solution to:

(1) The FOCs,
∂L

∂x
(x∗, λ∗, µ∗) = 0 for i = 1, . . . , m

(2) The equality constraints,
hj (x∗) = aj for j = 1, . . . , m

(3) The complementary slackness conditions for the inequality constraints,

µ∗
j ≥ 0 , gj (x∗) ≤ bj and µ∗

j (gj (x∗) − bj) = 0 for j = 1, . . . , k

Constraint Qualification

The constraint qualification is satisfied if the matrix of binding constraints is of full rank m + e.(
Dh (x∗)

DgE (x∗)

)
has full rank m + e, where,

(
Dh(x∗)

DgE(x∗)

)
=



∂g1
∂x1

(x∗) · · · ∂g1
∂xn

(x∗)
... . . . ...

∂ge

∂x1
(x∗) · · · ∂ge

∂xn
(x∗)

∂h1
∂x1

(x∗) · · · ∂h1
∂xn

(x∗)
... . . . ...

∂hm

∂x1
(x∗) · · · ∂hm

∂xn
(x∗)



Kuhn Tucker’s SOCs

Suppose (x∗, λ∗, µ∗) satisfies CQ and FOCs.

Considering the binding constraints: If vT D2
xL (x∗, λ∗, µ∗) v < 0 ∀v ̸= 0 in Rn for which Dh (x∗) v = 0

and D gE (x∗) v = 0 then x∗ is a strict local maximum.

[Negative definite for a maximum, positive definite for a minimum]
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Check via Bordered Hessian 0 0 Dh (x∗)
0 0 DgE (x∗)

Dh (x∗)T
DgE (x∗)T

D2
xL (x, λ∗, µ∗)


Check the sign of the last n − (m + e) leading principal minors:

(a) If they alternate in sign ending with (−1)n then Q is negative definite
[
vT Av < 0 ∀v ̸= 0

]
and x∗ is

a local maximum.

(b) If they have the same sign as (−1)e+m then Q is positive definite [ vT Av > 0 ∀v ̸= 0 ] and x∗ is a
local minimum.

35



Equality & Inequality Constraints: Maximisation Example

max x3 + y3 − 3x − 3y + 3xy subject to x2 ≤ 4 and y2 ≤ 4 [2 ≤ x ≤ 2 , 2 ≤ y ≤ 2]

Weierstrass Theorem

Compact constraint hence a global max and min exist.

Constraint Qualification

Let gE be all the constraints which bind at x∗, and e be the number of binding constraints. The constraint
qualification is satisfied if the matrix DgE (x∗) is of full rank e. Let Dg be the same matrix of all constraints
(binding and not),

Dg =
(

∂g1/∂x ∂g1/∂y
∂g2/∂x ∂g2/∂y

)
=
(

2x 0
0 2y

)
Now we need to consider what binds:

• If x2 = 4 and y2 < 4 then DgE =
(

2x 0
)

with x = +2 or −2 therefore rank is 1.
– Which is what it needs to be, since n − e = 2 − 1 = 1,
– Also the fact x = +2 or −2 is important because if the Jacobian was 0 it would have rank 0

(hence not full rank).

• If y2 = 4 and x2 < 4 then DgE =
(

0 2y
)

with y = +2 or −2 therefore rank is 1.
– Which is what it needs to be, since n − e = 2 − 1 = 1,
– Also the fact y = +2 or −2 is important because if the Jacobian was 0 it would have rank 0

(hence not full rank).

• If x2 = 4 and y2 = 4 then DgE = Dg with x and y = +2 or −2 therefore rank is 2.

Hence CQ holds: In this circumstance it cannot fail.

Of course if no constraints bind then we have no constraint qualification to look at, we just have an uncon-
strained maximisation problem!

Kuhn Tucker FOCs

L (x, y, λ1, λ2) = f(x, y) − λ1
(
x2 − 4

)
− λ2

(
y2 − 4

)
[For maximisation problems it MUST be the case that constraints are less than or equal to zero, that is
x2 − 4 ≤ 0

]
FOCs:

FOCx : 3x2 − 3 + 3y − 2λ1x = 0
FOCy : 3y2 − 3 + 3x − 2λ2y = 0
CSx : λ1 ≥ 0 , x2 ≤ 4 , λ1

(
x2 − 4

)
= 0

CSy : λ2 ≥ 0 , y2 ≤ 4 , λ1
(
y2 − 4

)
= 0
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Possible cases:

(1) Neither constraint binds

• Both Lambdas are zero.

• Function is has critical points at: 3x2 − 3 + 3y = 0 , 3y2 − 3 + 3x = 0 ⇒ y = (1 − x)2 , y2 − 1 + x = 0

• Using SOCs as well as the FOCs above the function is maximised at
(

−1−
√

5
2 , −1−

√
5

2

)
for a value of

9.1.

(2) Both constraints bind

• This implies: λ1 ≥ 0 , x2 = 4 , λ2 ≥ 0 , y2 = 4.

• FOCx can be rearranged as λ1 = 9+3y
2x ,

– With y = +2 or −2 the numerator is +ve hence denominator must be +ve hence x = +2.

• FOCy can be rearranged as λ2 = 9+3x
2y ,

– With x = +2 or −2 the numerator is +ve hence denominator must be +ve hence y = +2.

• So our critical point is (2, 2), with n = 2 and e = 2, hence n − e = 0 and so nothing to check, we have
a constrainted maximum at f(2, 2).

(3) One constraint binds

• Say x binds and y doesn’t, so x2 = 4 and y2 < 4

• Again FOCx can be written as λ1 = 9+3y
2x , with y = +2 or −2 the numerator is positive hence

denominator must be +ve hence x = +2.

• But there is no real solution for FOCy which becomes y2 − 1 + 2 = 0.

• By symmetry this will be the same for the other way around.

Evaluate and Compare

NO NEED TO CHECK THEM SOCs. Recall that the Weierstrass theorem held, hence we don’t have to
check any SOCs since we know that a global maximum must exist, and it must be one of the points found
by the FOCs.

Therefore just evaluate and see at which point the function is larger.

It turns out it is f(2, 2).
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Equality & Inequality Constraints: Minimisation Example

min x3 + y3 − 3x − 3y + 3xy subject to x2 ≤ 4 and y2 ≤ 4 [2 ≤ x ≤ 2 , 2 ≤ y ≤ 2]

Weierstrass Theorem

Compact constraint hence a global max and min exist.

Constraint Qualification

Let gE be all the constraints which bind at x∗, and e be the number of binding constraints. The constraint
qualification is satisfied if the matrix DgE (x∗) is of full rank e. Let Dg be the same matrix of all constraints
(binding and not),

Dg =
(

∂g1/∂x ∂g1/∂y
∂g2/∂x ∂g2/∂y

)
=
(

2x 0
0 2y

)
Now we need to consider what binds:

• If x2 = 4 and y2 < 4 then DgE =
(

2x 0
)

with x = +2 or −2 therefore rank is 1.
– Which is what it needs to be, since n − e = 2 − 1 = 1,
– Also the fact x = +2 or −2 is important because if the Jacobian was 0 it would have rank 0

(hence not full rank).

• If y2 = 4 and x2 < 4 then DgE =
(

0 2y
)

with y = +2 or −2 therefore rank is 1.
– Which is what it needs to be, since n − e = 2 − 1 = 1,
– Also the fact y = +2 or −2 is important because if the Jacobian was 0 it would have rank 0

(hence not full rank).

• If x2 = 4 and y2 = 4 then DgE = Dg with x and y = +2 or −2 therefore rank is 2.

Hence CQ holds: In this circumstance it cannot fail.

Of course if no constraints bind then we have no constraint qualification to look at, we just have an uncon-
strained maximisation problem!

Kuhn Tucker FOCs

L (x, y, λ1, λ2) = f(x, y) − λ1
(
4 − x2)− λ2

(
4 − y2)

[For minimisation problems it MUST be the case that constraints are greater than or equal to zero, that is
0 ≤ 4 − x2]
FOCs:

FOCx : 3x2 − 3 + 3y + 2λ1x = 0
FOCy : 3y2 − 3 + 3x + 2λ2y = 0
CSx : λ1 ≥ 0 , x2 ≤ 4 , λ1

(
x2 − 4

)
= 0

CSy : λ2 ≥ 0 , y2 ≤ 4 , λ1
(
y2 − 4

)
= 0
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Possible cases:

(1) Neither constraint binds

• Both Lambdas are zero.

• Using SOCs as well as the FOCs above the function is minimised at
(

−1+
√

5
2 , −1+

√
5

2

)
.

(2) Both constraints bind

• This implies: λ1 ≥ 0 , x2 = 4 , λ2 ≥ 0 , y2 = 4.

• FOCx can be rearranged as λ1 = − 9+3y
2x ,

– With y = +2 or −2 the numerator is +ve hence denominator must be +ve hence x = −2.

• FOCy can be rearranged as λ2 = − 9+3x
2y ,

– With x = +2 or −2 the numerator is +ve hence denominator must be +ve hence y = −2.

• So our critical point is (2−, −2), with n = 2 and e = 2, hence n − e = 0 and so nothing to check, we
have a constrainted maximum at f(−2, −2).

(3) One constraint binds

• Say x binds and y doesn’t, so x2 = 4 and y2 < 4

• Again FOCx can be written as λ1 = − 9+3y
2x , with y = +2 or −2 the numerator is positive hence

denominator must be +ve hence x = +2.

• Using FOCy : y2 − 1 − 2 = 0 which implies y = ±
√

3.

• Bordered Hessian

DgE =
(

2x 0
)

, D2L =
(

6x + 2λ1 3
3 6y + 2λ2

)
 0 −4 0

−4 −12 + 2λ1 3
0 3 6y


– n = 2 and e = 1, hence we need to check the last determinant. Specifically we need (−1)e for a

minimum.
– Insert the values for y and λ2.

• Solution is y =
√

3 hence we get (−2,
√

3) and by symmetry (
√

3, 2).

Evaluate and Compare

Therefore just evaluate and see at which point the function is smaller.

It turns out it is both (−2,
√

3) and (
√

3, 2).
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Concavity and Convexity

So far we have used the necessary FOCs and the sufficient SOCs to find local optima. Now we look to see
under what circumstances we can guarantee that a local optima is also a global one.

Concavity/Convexity

Consider a convex set S ⊆ Rn. A realvalued function f : S → R is [strictly] concave (convex) if for any
x, y ∈ S and any t ∈ (0, 1),

f(tx + (1 − t)y) ≥ (≤)tf(x) + (1 − t)f(y)

[Concave if all points of the function lie above the straight line drawn between two points]

Example Concavity Proof

f(x, y) = 1 − x2

let (x1, y1) and (x2, y2)

f (λx1 + (1 − λ)x2 , λy1 + (1 − λ)y2) ≥ λf (x1, y1) + (1 − λ)f (x2, y2)
λ ∈ [0, 1]

1 − [λx1 + (1 − λ)x2]2 ≥ λ
(
1 − x2

1
)

+ (1 − λ)
(
1 − x2

2
)

− λ2x2
1 − 2(1 − λ)λx2x1 − (1 − λ)2x2

2 ≥ −λx2
1 − x2

2 + λx2
2

(1 − λ)
[
λx2

1 − x2
2[1 − 1 + λ] − 2λx2x1

]
≥ 0

(1 − λ)λ
[
x2

1 − 2x2x1 + x2
2
]

≥ 0
(1 − λ)λ (x1 − x2)2 ≥ 0

Definiteness Definition of Concavity/Convexity

If f : S → R is C2

D2f is negative semidefinite for all x in S ⇔ f is concave on S.

D2f is negative definite for all x in S ⇒ f is concave on S.

D2f is positive semidefinite for all x in S ⇔ f is convex on S.

D2f is positive definite for all x in S ⇒ f is convex on S.

Global Optima

Let f be (strictly) concave/convex

If a local maximum/minimum exists, it is a (unique) global maximum/minimum.

If a stationary point exists, it is a (unique) global maximum/minimum.

[Note we need to look at SOCs for boundary optima though - the FOCs are not sufficient because of the
constrained (boundary) optima cases]
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Lagrangian Sufficiency

If there exists x∗ and λ∗ ≥ 0 such that,

L (x∗, λ∗) ≥ L (x, λ∗) ∀x

λ∗ (b − g (x∗)) = 0

And x∗ is feasible, then x∗ is optimal for the maximisation problem.

Sufficient FOC

Let f be concave and each gj be convex.

The Kuhn-Tucker FOCs are sufficient for a global maximum.

Notes

Idea behind this: if f is concave and gj convex, and further λ is great than or equal to zero, then the
Lagrangian is a concave function of x. Given that the KT conditions are satisfied then x∗ and λ∗ are
stationary points of the Lagrangian. Since the Lagrangian is concave these points must maximise it globally.

Quasi-Concavity/Quasi-Convexity

A function f is quasiconcave if,

f(tx + (1 − t)y) ≥ min{f(x), f(y)} ∀t ∈ (0, 1)

A function f is quasiconvex if,

f(tx + (1 − t)y) ≤ max[f(x), f(y)} ∀t ∈ (0, 1)

[Properties are strict if inequalities are strict]

Notes

Essentially imagine a straight line drawn from the y axis across and through f(x) and f(y). if all the
values of the function between these two points lie above the lowest point out of f(x) and f(y) then it is
quasiconcave.]

Some properties:

• Function f is quasiconcave iff f is quasiconvex

• If function f is concave then f is quasiconcave

• If f is convex then f is quasiconvex

• Any (strictly) monotonic function of one variable is both (strictly) quasiconcave and quasiconvex.

Global Optima

Let f be strictly quasiconcave.

If a local maximum exists, it is a unique global maximum.
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Sufficient FOC

Let f be quasiconcave and let each gj be quasiconvex.
The KuhnTucker FOCs are sufficient for a global maximum (at x∗ ) provided at least one of the following
holds.

(1) f is concave

OR

(2) Df (x∗) ̸= 0

Testing for Concavity/Convexity

2x2 Matrix

det A < 0 eigenvalues have opposite signs.
det A > 0 eigenvalues have the same sign,

tr(A) > 0 they are all positive,
tr(A) < 0 they are all negative.

Eigenvalue test

A is positive definite iff all its eigenvalues are strictly positive.
A is positive semidefinite iff all its eigenvalues are weakly positive.
A is negative definite iff all its eigenvalues are strictly negative.
A is negative semidefinite iff all its eigenvalues are weakly negative.
A is indefinite otherwise.

Determinant test

A is positive definite iff |Ak| > 0 for all k = 1, . . . , n

A is positive semidefinite iff |Ak| ≥ 0 for all k = 1, . . . , n and all row + col permutations.
A is negative definite iff (−1)k |Ak| > 0 for all k = 1, . . . , n

A is negative semidefinite iff (−1)k |Ak| ≥ 0 for all k = 1, . . . , n and all row + col permutations.
A is indefinite otherwise.
Notes

Where Ak is a square submatrix of A retaining only the first k rows and columns.

A1 = (a11) , A2 =
(

a11 a12
a21 a22

)
, ... , Ak =


a11 a12 · · · a1k

a21 a22 · · · a2k

...
... . . . ...

ak1 ak2 · · · akk


Note also in the ND and NSD cases the determinants of the submatrices need to oscillate.
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Result

D2f is negative semidefinite for all x in S ⇔ f is concave on S.

• NSD = concave

D2f is negative definite for all x in S ⇒ f is concave on S.

• ND = concave

D2f is positive semidefinite for all x in S ⇔ f is convex on S.

• PSD = convex

D2f is positive definite for all x in S ⇒ f is convex on S.

• PSD = convex
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Envelope Theorems

M(a) is the maximum value function and we assume x∗(a) is the optimal value of x∗ in terms of a.

max
x

f(x, a) subject to g(x, a) ≤ b

M(a) = {max f(x, a) | g(x, a) ≤ b}
M(a) = f (x∗(a), a)

Envelope Theorem

∂M(a)
∂ai

= ∂f (x∗(a), a)
∂ai

An Example:

f(x, a, b) = 4 + 2bx − ax2

fx (x∗, a, b) = 2b − 2ax∗ = 0 ⇒ x∗(a, b) = b

a

ET : ∂M(a, b)
∂a

= ∂f (x∗(a, b), a, b)
∂a

= −x∗(a, b)2

See the usefulness of this: we never even needed to calculate the max value function.

Envelope Theorem for Constrained Problems

For, L(x, λ, a) = f(x, a) − λ(g(x, a) − b)
∂M(a)

∂ai
= ∂L (x∗(a), λ ∗ (a), a)

∂ai

Interpretation of Lagrange Multipliers

λj represents the effect on the objective function of relaxing the constraint gj(x) ≤ bj

This is in fact a special case of the ET:

∂M

∂bj
= ∂f

∂bj
(x∗(b))︸ ︷︷ ︸

= ∂f
∂x∗

∂x∗
∂bj

=0

−
∑

i

λ∗
i (b) ∂

∂bj
(gi (x∗(b)) − bi)

∂M

∂bj
= 0 − λ∗

j (b)(0 − 1) = λ∗
j
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Decision Theory: Preferences & Utility

Preferences

Generally considered to be:

• Ordinal: Says which option is better without quantifying the preference.

• Stable: Do not change from choice problem to choice problem.

Binary Relation: Given X (a set of economic objects), a binary relation is a description of pairs of elements
in X that are related.

• Denoted (x, y) ∈ B, or xBy

• When binary relations represent preferences we can use ≻ ,≿, P

Preference relations are said to be rational if they have this set of properties:

• Reflexivity: For every object x ∈ X, xBx must be true.
– You don’t actually need reflexivity since completeness implies reflexivity.

• Completeness: For every x, y ∈ X, either xBy, yBx or both must be true.
– Completeness is made up of connectedness and reflexivity. To be connected is to mean every pair

of distinct (different) elements can be related in one way or another. To be reflexive is to mean
that every distinct element is related to itself.

• Transitivity: For every x, y, z ∈ X, whenever xBy and yBz, it must also be true that xBz

Strict (part of) Rational Preference: Given the rational preference ≿, the strict part of ≿ is the binary
relation ≻ defined by, x ≻ y iff x ≿ y but not y ≿ x.

• These preferences are:

– Always transitive.
– May or may not be connected. [If you were indifferent between two elements then the relation

would not be connected, if you were indifferent between no elements then the relation would be
connected.]

– Never reflexive.
– Always antisymmetric.

Note: Antisymmetric means that for any distinct x and y, xBy and not yBx, but notice that when x = y
then xBy and yBx and yet we still have antisymmetry. Asymmetry says for any x and y, xBy and not yBx.

Indifferent (part of) Rational Preference: Given the rational preference ≿, the indifferent part of ≿ is
the binary relation ∼ defined by, x ∼ y iff x ≽ y and y ≿ x.

• Often called an equivalence relation, these preferences are:
– Always transitive.
– Always reflexive.
– Always symmetric.
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Equivalence class: On X is given by [a] = {x ∈ X | x ∼ a}, that is the set of all x in X such that x and
a are equivalent to one another.

• We might also use the notion of the quotient set/space which is the set of equivalence classes, denoted
by X/ ∼.

• For example, consider X as the set of cars and the equivalence relation as ‘has the same colour as’, in
this case X/ ∼ denotes the set of all the colours of cars.
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Utility

Utility Representation

Given the rational preference ≿ over X, we say that the real-valued function u : X → R is a utility
representation (utility function) whenever, for every x, y ∈ X :

x ≿ y iff u(x) ≥ u(y)

Note that while only rational preferences can have a utility representation; rational preferences do not imply
a utility representation if they exist over an infinite set of objects.
Transformations

Rational preferences are ordinal and, if u(.) represents this preference, then any monotone transformation
of u(.) also represents the same preference.
That is, providing f : R → R is strictly increasing,

x ≿ y iff u(x) ≥ u(y) iff f(u(x)) ≥ f(u(y))

Maximal Elements

A finite set always has a maximal element.
That is given that ≿ is a rational preference over a finite set X every subset A ⊆ X has a maximal element.
For an infinite set to have a maximal element,

(1) Rational preferences ≿ must be continuous.

(2) Subsets must be compact (closed and bounded) - [0, 1] rather than (0, 1)

• If not bounded then we must have an argument to determine that the solution must belong to the
compact set [−K, K] and then we can go from there.

Conditions for representation

(1) Only rational binary relations can be represented by a utility function.

• Let B be a binary relation on X, and u : X → R such that, for every x, y ∈ X, xBy iff u(x) ≥ u(y).
Then, B must be a rational preference.

• Proof

– B must be complete because, for any pair x, y, it is either u(x) ≥ u(y), u(y) ≥ u(x), or both.
Similarly B must be transitive because if xBy and yBz it must be the case that u(x) ≥ u(y) ≥
u(z), and hence u(x) ≥ u(z) which implies xBz as desired.

(2) If X is finite, every rational preference ≿ can be represented.

(3) If the rational preference ≿ has a finite number of equivalence classes, the preference can be
represented.

• Equivalence class: [a] = {x ∈ X | x ∼ a} the set of all x in X such that x and a are equivalent to
one another.

• This conditions mean that not all rational preferences can be represented:
– E.g. Lexicographic preferences:

{(x1, x2) : x1, x2 ∈ [0, 1]}
where (x1, x2) > (y1, y2) iff x1 > y1 or (x1 = y1 and x2 > y2)
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Revealed Preference

A choice problem is a subset of alternatives A ⊆ X over which the analyst can observe the behaviour of the
individual. It is often called the menu.

If we let ∆ = {A, B, . . .} be the menus over which the analyst has information. Then choice data is defined
as a map of the form c : ∆ → X with the obvious assumption that c(A) ∈ A.

• Universal choice data is such that ∆ = χ where χ is the collection of all subsets of X. [Essentially
the domain is all possible menus].

• Binary choice data is such that ∆ = β, where β is the collection of all choice problems formed by
two alternatives.

• Bundle consumption choice data is such that ∆ is formed by some budget sets of the form
p1x1 + . . . + pnxn ≤ m

We then can learn about preferences from this choice data with revelation.

• Direct Revelation: Given choice data c, we say that x is directly revealed preferred to y ̸= x and
write x ≻c y whenever it is the case that x = c(A) and y ∈ A.

• Indirect Revelation: Given choice data c, we say that x is indirectly revealed preferred to y ̸= x
whenever there is a sequence of elements z1 = x, z2, . . . , zn = y such that zi = c (Ai) and zi+1 ∈
Ai\ {zi}. That is whenever z1 = x ≻c z2 ≻c . . . ≻c y = zn.

– Where S\{a} := {x ∈ S | x ̸= a}, i.e. S backslash element a is the subset of all elements of S
except a.

Binary and Universal choice data are both enough to learn all the preferences of the individual.

If X contains n elements, then n − 1 choice problems may be enough to learn all the preferences.

The analyst can make assumptions, for example if two things are identical but one is of worse quality then
we can assume xh ≻ xl, (high quality vs low quality).
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Rational Choice Data

Choice data c : ∆ → X is said to be rationalizable if there exists a rational preference ≿ such that c(A) is
always the maximal element in A according to ≿.

OR

Choice data c : ∆ → X is said to be rationalizable if there exists a utility representation u() such that
c(A) is always the maximal element in A according to u().

Choice data is rationalizable iff [note the iff, hence both directions of the biconditional need proving] it
satisfies,

(1) Property α

• Property alpha is satisfied by c if for any pair of choice problems B ⊆ A it is the case that: If c(A) ∈ B,
then c(B) = c(A).

• [If you remove some options from the menu A but the maximal element remains then the maximal
element of this new set should stay the same as what it was for A.]

• Proof of this:

(A) Rationalizability implying Property alpha

– Start from c being rationalizable. Hence there exists a preference ≿ explaining all choices. Hence
c(A) is the maximal element of A. It is obvious then that c(A) > y holds for all other elements
in A. From this given B is a subset of A, containing c(A), then hence c(A) > y for all elements y
in B, hence c(A) must be the optimal element of B.

(B) Property alpha implying Rationalizability

– Start from c satisfying the property α. We can start with X1 = X and x1 = c (X1). This is
the best alternative and property α guarantees that it is chosen when available. Now consider
X2 = X1\c (X1) and x2 = c (X2). This the best remaining alternative, and property α guarantees
it is chosen. Therefore x1 ≻ x2 Then repeat this process such that x1 ≻ x2 ≻ . . . ≻ xn

(Notice that this proof requires that X is finite).

(2) Weak Axiom of Revealed Preference

• Menu A and B cannot reveal x > y and y > x.

49



Bundles

Uses the space X = Rn
+ and it tends to be the case that n = 2.

In this space the variation of menus tends to be because of variation in income and/or prices.

• Strict Monotonicity: We say that ≿ is strictly monotone if x1 ≥ x2 and y1 ≥ y22 with at least one
of them strict, implies that (x1, y1) > (x2, y2).

Varying just price or income to test rationality is generally unhelpful,

• In the case of just income the choice of the big set is never available in the small set, hence property
α or the weak axiom never say anything.

• In the case of just price the choice of the big set is not available in the small set aside for the very
extreme case of the choice being on the axis (in this case property α and therefore rationality can be
rejected).

Figure 1: Left: varying only incomes; Right: varying only prices (we can learn something but only if the
choice for menu A is c(A’))

Figure 2: Varying price and income
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Combined variations are informative,

• These sets of preferences plus monotonicity plus weak axiom can be shown to be not rational. If c(A)
is preferred to a, and c(B) is preferred to b, but b is better than c(A) and a is better than c(B).

• Hence c(A) is preferred to c(B) and c(B) is preferred to c(A).

• Which implies inconsistency.

(Strict) Convexity: For every x, y such that x > y and every α ∈ (0, 1) , x ≻ αx + (1 − α)y > y. - [If x is
preferred to y then a mixture of some x and some y is still preferred to y averages are better than extremes.]

Cobb-Douglas: The fraction of income spent in each good is constant. Test by varying m and checking
fraction is constant.

Quasi-Linearity: Utility in the representation U(x, m) = u(x) + m.
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Time

Use the simplest set X = R2.

An element (x, t) describes the amount of money x to be paid at time t.

• Discounted Utility: With u : R → R and δ ∈ (0, 1], discounted utility says that (x, t) ≿ (y, s) iff
U(x, t) = δtu(x) ≥ δsu(y) = U(y, s).

Discounted utility is a rational preference.

It also has the property of:

• Stationarity: We say that the preference ≿ over dated prizes satisfies stationarity if for every x,
y, t, s, r, it is the case that: (x, t) ≿ (y, s) iff (x, t + r) ≿ (x, s + r).

Other important properties

• Single-Peakedness: Let X = [0, 1]. We say that ≿ is single peaked if there exists x∗ such that:

y2 < y1 < x∗ ⇒ y1 ≻ y2 and x∗ < y1 < y2 ⇒ y1 ≻ y2

y(1) is always preferred to y(2) when it is closer to the bliss point. i.e. the ordering is always
y(2), y(1), x∗, y(1), y(2).
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Decisions Under Risk

Probability

Sample space

The set of all possible results of an experiment, denoted Z.

Finite Random Variables

A FRV over Z is a variable that can adopt, randomly, a finite number of different values of the sample
space (often called the support of a random variable), with some preassigned probability (often called the
probability mass of each possible result).

It can hence be defined as a map (function),

p : Z → [0, 1]
Where p(z) = 0 except for a finite number of results, and with,∑
z∈Z

p(z) = 1

Expected Value

EV (p) =
∑
z∈Z

p(z)z

Given a FRV p and a map h : Z → Z, we can denote by ph the FRV that assigns probability p(z) to the
result h(z).

If h is a linear map: h(z) = a + bz then EV (ph) = a + bEV (p)

Variance

Var(p) =
∑
z∈Z

p(z)(z − EV (p))2

Given a FRV p and a map h : Z → Z, we can denote by ph the FRV that assigns probability p(z) to the
result h(z).

If h is a linear map: h(z) = a + bz then Var (ph) = b2 Var(p)

Jensen’s Inequality

If h is strictly concave, then EV (ph) < h(EV (p)).

If h is strictly convex, then h(EV (p)) < EV (ph).

Intuitive proof: If there are only two possible results z1 and z2 in an experiment, and h(.) is concave, then,

EV (ph) = p (z1) h (z1) + [1 − p (z1)] h (z2).

This is strictly less than,

h
(

p (z1) z1 + [1 − p (z1)] z2

)
= h(EV (p)).
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Jenson’s inequality can be rewritten in a few useful ways:
For φ (.) concave { convex } and pi’s as positive weights of xi’s such that

∑n
i=1 pi = 1,

n∑
i=1

piφ (xi) ≤ φ

(
n∑

i=1
pixi

)
,

{
φ

(
n∑

i=1
pixi

)
≤

n∑
i=1

piφ (xi)
}

For φ (.) concave { convex } and ai’s as positive weights of xi’s (not summing to one),∑n
i=1 aiφ (xi)∑n

i=1 ai
≤ φ

(∑n
i=1 aixi∑n

i=1 ai

)
,

{
φ

(∑n
i=1 aixi∑n

i=1 ai

)
≤
∑n

i=1 aiφ (xi)∑n
i=1 ai

}
For φ (.) concave { convex } and ai ’s as positive weights of xi ’s where ai = a ∀i,∑n

i=1 φ (xi)
n

≤ φ

(∑n
i=1 xi

n

)
,

{
φ

(∑n
i=1 xi

n

)
≤
∑n

i=1 φ (xi)
n

}

Events

An event E is a subset of the sample space. Given a finite random variable p, the probability of event E is
simply p(E) =

∑
z∈t p(z).

Independent events

E and F are independent events if p(E ∩ F ) = p(E)p(F ).

Conditional probability

p(E | F ) = p(E ∩ F )
p(F )

Bayes’ Rule

p(E | F ) = p(F | E)p(E)
p(F )

Cumulative Distribution Function

The map F : Z → [0, 1] where F (z) is the total mass of experiencing a result below or equal to z.

Continuous Random Variables

A CRF is a continuous and increasing map F : Z → [0, 1] with values 0 and 1 in the lower and upper limits
of the sample space.
The CDF is given by F (z) and the pdf by f(z), where:

For a ≤ Z ≤ b F (t) = P (z ≤ t) =
∫ t

a

f(z)dz

EV (f) =
∫ −∞

∞
zf(z)dz

Var(f) =
∫ −∞

∞
(z − EV (f))2f(z)dz
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Rational Preferences over Lotteries

Let Z be a finite space of prizes.

Lottery: A lottery is a (finite) random variable over the prize space.

Figure 3: Lotteries

We now study preferences ≿ over L(Z).

Rational Preferences: We assume that individuals have rational preferences over L(Z), i.e. ≿ is transitive
and complete.

• Rational preferences do not always guarantee that a utility function exists, this is the case again for
rational preferences over lotteries even though the prize space is finite!

• Example: Lexicographic preferences

– First compare the probability of z1, if equal then compare z2′ , if equal then z3 and so on.
– These preferences are clearly transitive and complete (rational).
– We can’t construct a utility function though.

• Example: ‘Minimising mental contemplation’

– An individual prefers a lottery if there are less results to be contemplated (less mental burden)
– These preferences are rational and the utility function is U(p) = the number of prizes with zero

probability.
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Expected Utility Theorem

The binary relation ≿ is rational and satisfies the properties of independence and continuity iff it can be
represented by an expected utility.

p ≿ q iff
∑
z∈Z

p(z)v(z) ≥
∑
z∈Z

q(z)v(z)

Properties

(1) Independence

Let p, q, r be three lotteries and λ ∈ [0, 1]. Let p′ and q′ be the simple lotteries associated, respectively, to
the compound lotteries λp ⊕ (1λ)r and λq ⊕ (1λ)r.

Then,

p ≿ q iff p′ ≿ q′

(2) Continuity

Let [a] denote the lottery in which prize a is given with certainty. Suppose that [a] > p > [c]. Then there
exists a λp such that the simple lottery associated to λp ⊕ (1λp) [c] is indifferent to p

Marschack-Marina Triangle

Suppose three possible outcomes x1, x2, x3 such that x3 > x2 > x1. These occur with probabilities p1, p2, p3
where

∑
l pi = 1. Because of the fact that p3 = 1p1p2 these can be plotted on the unit triangle.

Figure 4: Marschack-Marina Triangle

• On the triangle a point = a lottery.

• Northwest = increasing utility (increasing probability of best option).

• (0, 0) = x2 with certainty, (1, 0) = x2, with certainty, (0, 1) = x3 with certainty.
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EUT implies that indifference curves must be parallel straight lines. Why?

(1) Linear in probabilities:

• Because when U(p) = U (p′) we know that U (ap + (1a)p′) = aU(p) + (1a)U (p′) which is constant if
they are the same utility and linear in probabilities.

(2) Independence:

• If p ∼ p′ then p ∼ αp + (1α)p′ ∼ p′ (straight line)

Continuity implies that for any lottery there exists a point on the frontier that is indifferent to it (a point
where a combo of a better and worse lottery is indifferent to said lottery). A finite monetary lottery is a
finite random variable over the monetary prize space.
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Monetary Lotteries

A finite monetary lottery is a finite random variable over the monetary prize space.

We can reproduce the EUT with a function over monetary space v : Z → R with,

p ≿ q iff
∑

z∈Zp

p(z)v(z) ≥
∑
z∈Z

q(z)v(z)

p ≿ q iff
∫

z∈Z

p(z)v(z)dz ≥
∫

z∈Z

q(z)v(z)dz

Certainty equivalent

The certainty equivalent of a lottery is the amount of money that is indifferent to the lottery.

v(CE(p)) = EU(p)
CE(p) = v1[EU(p)]

If v is monotone and continuous then every lottery has a certainty equivalent.

• Proof:

– Consider zl and zh the lowest and highest payoffs in the support of a lottery. If v is monotone
then the utility of zl and zh must be lower and higher respectively than the expected utility of
the lottery. We can then use continuity to find the CE between them.

Risk Attitudes

Risk neutral if every lottery is indifferent to its expected value.

Risk averse if every lottery is worse than its expected value.

Risk loving if every lottery is better than its expected value.

A Bernoulli utility (utility function over monetary space) is risk averse iff v is concave.

• Proof:

– Concavity implies that EV(u(p)) < u(EV (p)) i.e. the expected utility of every lottery is less than
the expected utility of receiving the expected value (with certainty). So you would prefer the
expected value than to play the lottery.
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Arrow-Pratt Results

Measuring concavity of utility functions and hence risk aversion.

Need for normalisation:

• A property of Expected utility is that u and v are equivalent where u(.) and v(.) = α + βu with β > 0.

• When this is the case we face a problem of using the second derivative to measure concavity since,

v′(x) = βu′(x) and v′′(x) = βu′′(x) hence v′′ ̸= u′′

• By normalising with the first derivative we can remove the β.

Measures:
Absolute Arrow-Pratt: A(x) = −u′′(x)

u′(x)

Relative Arrow- Pratt: R(x) = A(x)x = −u′′(x)
u′(x) x

Alternatively:

If it is the case that u1 = f (u2) with f(.) concave
[

that means that f ′′() < 0 (second derivative less than
zero ⇒ getting more negative ⇒ concave)

]
then u1 is more concave than u2.

Arrow-Pratt Theorem

The following statements are equivalent:

(1) For every lottery, the certainty equivalent associated to u1 is smaller than that of u2.

• (You would accept less money to remove the risk)

(2) u1 is more concave than u2.

• (More risk averse)

(3) The Absolute Arrow-Pratt measure of u1 is, as a function, greater than that of u2.

• (Higher A(x) means more concave i.e. more risk averse)

(4) The risk premium associated to u1 is larger than that of u2.
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Given wealth x, subject to additive, normally distributed, fluctuations with variance σ2 and mean zero,

u(CE(p)) = u(x − RP (p)) = EU(p)

u(x − RP (p)) ≈ u(x) − RP (p)u′(x) (by a first order Taylor approximation)

EU(p) ≈ u(x) + u′(x)0 + 1
2u′′(x)σ2 (by a second order Taylor approximation)

≈ u(x) + 1
2u′′(x)σ2

Therefore,

u(x) − RP (p)u′(x) ≈ u(x) + 1
2u′′(x)σ2

RP (p) ≈ −1
2

u′′(x)
u′(x) σ2 = 1

2σ2A(x)

(See microeconomics notes for a more complete version of this proof).

CARA: Constant Absolute Risk Aversion

Larger a means more risk averse.
A(x) = a

Eg : ua(x) = −eax when a ̸= 0

DARA: Decreasing Absolute Risk Aversion

Attitude towards the lottery
[ 1

2 , 1
2 ; x + K, xH

]
is more favourable when x is larger

Eg: u(x) =
√

x , A(x) = 1
2x

CRRA: Constant Relative Risk Aversion

R(x) = r where larger r implies more risk aversion.

Eg: ur(x) = x1−r with r < 1

If the r is negative then we have a risk lover.

If r = 0 we have risk neutral.

When r tends to one we get logarithmic preferences.
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Dynamic Optimisation & Differential Equations
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