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Abstract

These are my microeconomics notes made for my finals in 2022. They cover all of the topics. Probably
the most useful part of these notes are the practise questions with solutions at the end of each topic.
These questions cover the majority of Part A questions that you will find on the exam, and are taken
from old problem sheets as well as past exams. These questions are in no way my own, but the answers
are. Feel free to use these notes and pass them on to others. Please note, however, that these have just
been made by a student and not checked over. They likely contain errors, so it will be worth checking
things for yourself. Thanks to Howard Smith, Severine Toussaert and Ines Moreno de Barreda - these
notes are just my interpretation of their lectures and tutorials.
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General Equilibrium

Exchange Economy

2 Agents (A, B), 2 goods (1, 2)

Endowments: wa =
(
w1

a, w2
a

)
, wb =

(
w1

b , w2
b

)
Consumption: xa =

(
x1

a, x2
a

)
, xb =

(
x1

b , x2
b

)
Utility: ua

(
x1, x2) , ub

(
x1, x2)

Prices: p = (p1, p2)

Demand: xa (p1, p2, p · wa) , xb (p1, p2, p · wb)

Edgeworth Box

Figure 1: Edgeworth Box

Excess Demand

Good 1 aggregate excess demand: z1(p) =
(
x1

a(p) − w1
a

)
+
(
x1

b(p) − w1
b

)
Good 2 aggregate excess demand: z2(p) =

(
x2

a(p) − w2
a

)
+
(
x2

b(p) − w2
b

)
• At the equilibrium price vector p∗ > 0 we want, z1 (p∗) = z2 (p∗) = 0

• That is: total demand = total amount of resources

5



Walras’ Law

p · z(p) = 0

Which in the n agent problem is written as

p1z1(p) + p2z2(p) + . . . + pKzK(p) = 0

Note this is for any p, not just p∗, and further note that if (K − 1) markets clear then the Kth market clears
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Leisure/Labour Production Economy

Consumer who likes leisure and goods, firm who maximises profits and let the consumer owns the firm.

Agents: C, F (Consumer, Firm); Goods: X, R (good, leisure)

• Utility: u(X, R) where R = 1 − L

• Production: F (L)

• Prices: p, w

Consumer Problem

max u(x, R) such that px = w(1 − R) + π ⇔ px + wR = w + π

Firms Problem

max px − wL such that x ≤ F (L)

In terms of Leisure

Figure 2: In terms of Leisure
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In terms of Labour

Figure 3: In terms of Labour
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Simple Production Economy

2 factors (L, K) and 2 goods (X, Y )

Assumptions

(1) Constant returns to scale,
Fi(aK, aL) = aFi(K, L)

• F is homogeneous of degree one.

(2) Decreasing marginal returns to each factor,

∂2Fi

∂K2 < 0 ,
∂2Fi

∂L2 < 0

• (Even though we have CRS, if you hold one input factor constant and increase the other, the marginal
productivity of it will go down)

(3) Factors are perfectly mobile across sectors.

• This means the wage rate w and the rental rate of capital r will be the same across the sectors. (X
and Y face the same w and r).

(4) Perfectly competitive markets for K and L,

w = pi
∂Fi

∂L
, r = pi

∂Fi

∂K

Firm’s Problem

min
Ki,Li

{wLi + rKi} subject to Y ≤ Fi (Ki, Li)

If we let,
raK,i(w, r) + waL,i(w, r) := min

Ki,Li

{wLi + rKi} s.t. 1 ≤ Fi (Ki, Li)

That is we find the minimum cost of outputting exactly one unit.

Under zero profits we know price = cost, so,

pi = raK,i(w, r) + waL,i(w, r)

At optimum the Marginal Rate of Technical Substitution (MRTS) will be equal to the relative factor price:

MRTSi =
∂Fi

∂Li

∂Fi

∂Ki

= w

r

And due to CRS the optimal K
L ratio does not depend on scale.
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Figure 4: Left graph is in the case of a single inductry, the right graph considers two industries

Rybczynski Theorem

If,

(1) Relative prices are constant,

(2) Both goods continue to be produced,

Then,

• An increase in the supply of one factor will lead to an increase in output of the good that uses this
factor more intensively and decrease the output of the other good.

Figure 5: Rybczynski Theorem
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Stolper-Samuelson Theorem

If,

(1) CRS,

(2) Both goods continue to be produced,

Then,

• A relative increase in the price of a good will increase the real return to the factor used intensively in
that industry and reduce the return to the other factor.

Figure 6: Stolper-Samuelson Theorem
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‘Specific Factors’ Production Economy

Two producers (1, 2) and one consumer.

Production function: yi = Gi(Li)

Labour: L = L1 + L2

Profit: πi = piGi(Li) − wLi

Utility: u(x1, x2)

Consumer Problem

max u(x1, x2) s.t. p1x1 + p2x2 = wL + π1 + π2

Firms Problem

max
Li

πi = piGi(Li) − wLi

Firm chooses labour allocation since the consumer controls the firm and hence decides how to best allocate
her labour. Convex indifference curves ensures consumer always wants some of each good (need infinite
amount of good 1 to take no good 2, and vice-versa).

Autarky

For the consumer: MRS = Price ratio
∂u
∂x1

∂u
∂x2

= p1

p2

For the firm: MPL = MCL or MRT = Price ratio

piG
′
i(Li) = w ;

∂y1
∂L2
∂y2
∂L2

= p1

p2

Figure 7: Autarky

12



Trade

Economy opens up for trade agents are exposed to new world prices pw
1 , pw

2 .

Suppose the economy has comparative advantage in good one: pw
1 /pw

2 > p1/p2

Hence exports good 1 and imports good 2.

Exporting the good that it has comparative advantage in allows the economy to move its consumer to a
higher indifference curve.

Notice that in the graph consumption of both goods has increased, but the higher-than-autarky indifference
curve could still be reached even if less of good 1 was consumed.

Notice that ANY PRICES OTHER THAN AUTARKY PRICES MAKES CONSUMER BETTER OFF!
That is as long as the world price is not the same as the autarky price then the consumer is unambiguously
better off.

• A: Production and Consumption in Autarky
• C: Consumption during trade
• D: Production during trade
• A → B: Gains from liberalisation (trading but not specialising)
• B → C: Gains from specialisation in good 1.

Figure 8: Trade
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Comparative Advantage

This model shows two countries (red and blue), where red is better at producing good 2 and blue better at
producing good 1.

Under Autarky the consumers (consumers in both countries have identical preferences) are at A.

Under trade the consumer is at a higher indifference curve at F .

It is true that consumers always gain from trade even if they have different preferences.

Every country has a comparative advantage in something (unless the countries are identical).

Figure 9: Comparative Advantage

So what are the losses from trade?

(1) Consumers within a country

• Notice how consumers in country 1 who liked good 1 lose out when it is exported, but consumers who
like good 2 gain from the cheaper imports.

(2) Firms within a country

• MB = MC (see firms FOCs) under autarky hence we are at A.

• The firm not producing the specialised good loses out – the other firm is selling more of their’s at the
new higher world price. Meanwhile this good is being imported more cheaply.
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Figure 10: Consumers within a country

Figure 11: Consumers within a country

15



Evaluating CE

1. Uniqueness?

• Not Globally unique – there may be many Walrasian equilibria for a given specification of preferences
and endowments.

• Locally unique – there is a finite number of equilibria.

2. Getting to equilibrium?

• Tatonnement (Walrasian Auctioneer)

i. Gets everyone to report demand and endowment.
ii. Calculates excess demand for each good.
iii. Sets prices in t + 1 such that,

∂pk(t)
∂t

= akzk(p(t))

iv. This doesn’t even always work – sometimes a competitive equilibrium still isn’t reached as dy-
namics can get stuck.

• Need to assume that goods are gross substitutes (increase in price of one increases demand for the
other) in order for this to work.

3. Vernon Smith’s Experiment

• Using:

i. Double oral auction (buyers and sellers shout out prices),
ii. Repeat experiment over several periods.

• His students eventually converged to competitive equilibrium.
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Worked Examples

Example: Simple Exchange Economy

Consider an economy with two goods, 1 and 2, and two consumers, a and b. The preferences of consumers
are represented by the utility functions:

ua(xa, ya) = 2lnxa + 3lnya and ub(xb, yb) = 2lnxb + lnyb

Let consumer a be endowed with 20 units of x and consumer b be endowed with 12 units of y.

(a) Find demand functions.

(b) Find excess demand functions.

(c) Confirm Walras’ Law holds.

(d) Find optimal price vector and Walrasian equilibrium.

Demand Functions,
L = 2lnxa + 3lnya + λ(20px − pxxa − pyya)

FOC,
Lxa

= 2
xa

− λpx = 0

Lya = 3
ya

− λpy = 0

pxxa + pyya = 20px

Solve,
20px = 2

λ
+ 3

λ

λ = 1
4px

Hence we get the demand functions,
xa = 8 , ya = 12px

py

L = 2lnxb + lnyb + λ(12py − pxxb − pyyb)

FOC,
Lxb

= 2
xb

− λpx = 0

Lyb
= 1

yb
− λpy = 0

pxxb + pyyb = 12py

Solve,
12py = 2

λ
+ 1

λ

λ = 1
4py

Hence we get the demand functions,
xb = 8py

px
, ya = 4
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Excess Demand,
zy(px, py) = 12px

py
+ 4 − 12 = 12px

py
− 8

zx(px, py) = 8 + 8py

px
− 20 = 8py

px
− 12

Walras’ Law
pyzy(px, py) + pxzx(px, py) = 0

py[12px

py
− 8] + px[8py

px
− 12] = 0

12px − 8py + 8py − 12px = 0

Optimal Price Vector
zy(p∗

x, p∗
y) = 0 , zx(p∗

x, p∗
y) = 0

12p∗
x

p∗
y

− 8 = 0 , 8
p∗

y

p∗
x

− 12 = 0

p∗
x

p∗
y

= 2
3 ,

p∗
y

p∗
x

= 3
2

Walrasian Equilibrium
p∗

x

p∗
y

= 2
3 , Xa(xa, ya) = (8, 8) , Xb(xb, yb) = (12, 4)

18



Example: Quasi-Linear Utility Simple Exchange Economy

Consider a pure exchange economy with two goods, x and y, and two consumers, a and b, that trade the
goods. The preferences of consumer a are represented by the utility function:

ua(xa, ya) = xa + lnya

and the preferences of consumer b are represented by the utility function:

ub(xb, yb) = xb + lnyb

(a) Calculate the Walrasian equilibrium for endowments (wa
x, wa

y) = (4, 0) and (wb
x, wb

y) = (0, 4).

(b) Illustrate your findings in an Edgeworth box, and clearly indicate all the Pareto efficient allocations.

Walrasian Equilibrium

L = xa + lnya + λ(ma − pxxa − pyya) where ma = pxwa
x + pywa

y

FOC,
Lxa = 1 − λpx = 0

Lya = 1
ya

− λpy = 0

ma = pxxa + pyya

Hence we get the demand functions for a, and by symmetry for b,

xa = wa
x + py

px
wa

y − 1 , ya = px

py

xb = wb
x + py

px
wb

y − 1 , ya = px

py

From which we are able to start solving,
x∗

a = 4 + py

px
0 − 1

x∗
a = 3

Since xa + xb = 4 we hence know that x∗
b = 1. This will now help us find the optimum price vector,

x∗
b = 1

x∗
b = 0 +

p∗
y

p∗
x

4 − 1

2 = 4
p∗

y

p∗
x

p∗
y

p∗
x

= 1
2

From this we can then calculate that y∗
a = y∗

b = 2.

Finally,
Xa(x∗

a, y∗
a) = (3, 2) , Xb(x∗

b , y∗
b ) = (1, 2)
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Example: Production Economy (One firm & one good)

Consider a simple production economy with one good and one firm, which is owed by the consumer - hence
the consumer recieves its profits. Let the firm have the DRS production function,

x = L
1
2

And the consumer have the utility function which depends on consumption and leisure,

u(x, R) = αlnx + (1 − α)lnR

In all the parts below you may asssume that p, the price of good x, is 1.

(a) Find the Labour Demand.

(b) Find the Consumer Demands.

(c) Find the Labour Supply.

(d) Find the market clearing outcome

Labour Demand,
max π(L) = L

1
2 − wL

FOC,
0 = 1

2L− 1
2 − w

Hence,
L∗ = ( 1

2w
)2

x(L∗) = 1
2w

π(L∗) = 1
2w

− w

4w2 = 1
4w

Consumer demands,

max u(x, R) = αlnx + (1 − α)lnR such that px + wR ≤ w + π(w)

Lagrangian,
L = αlnx + (1 − α)lnR − λ(px + wR − w − π(w))

FOC,
Lx = α

x
− λp = 0

LR = 1 − α

R
− λw = 0

px + wR = w + π(w)
Which imply,

px = α

λ

wR = 1 − α

λ
α

λ
+ 1 − α

λ
= w + π(w)

λ = 1
w + π(w)
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Hence the demands for the good and for leisure,

x(p, w) = α
w + π(w)

p

R(p, w) = (1 − α)w + π(w)
w

Labour supply,

Is given by 1 − Demand for Leisure, since we assume that each consumer is endowed with one unit of labour
which they can commit to work or to leisure.

Market Clearing,

Assuming p = 1 for simplicity,
1 − (1−α)w + π(w)

w
= 1

4w2

w∗ = (2 − α

4α
) 1

2

π(w∗) = 1
4( 4α

2 − α
) 1

2
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Example: Production Economy (Two firms & two goods)

Consider a production economy two goods, c1 & c2, and two firms. Let the firm have the CRS production
functions,

yi = Li

αi

And recall that CRS implies the firms do not make a profit.

Let the consumer have the utility function which depends on consumption of the two goods,

u(c1, c2) = αlnc1 + (1 − α)lnc2

(a) Find the Consumer Demand.

(b) Find the optimal wage using zero profits.

(c) Find the market clearing outcome.

Consumer Demands,

max u(c1, c2) = αlnc1 + (1 − α)lnc2 such that p1c1 + p2c2 ≤ wL

Lagrangian,
L = αlnc1 + (1 − α)lnc2 − λ(p1c1 + p2c2 − wL)

FOC,
Lc1 = α

c1
− λp1 = 0

Lc2 = 1 − α

c2
− λp2 = 0

p1c1 + p2c2 = wL

Which imply,
p1c1 = α

λ

p2c2 = 1 − α

λ
α

λ
+ 1 − α

λ
= wL

λ = 1
wL

Hence the demand for each good,
c1 = αwL

p1

c2 = (1 − α)wL

p2

Zero profits and the assumption that the firm makes a non-zero amount of the good gives us the optimal
wage,

π = piyi − wLi = 0
piyi = wLi

pi
Li

αi
= wLi

w = pi

αi
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In market clearing yi = ci,

c1 =
α p1

α1
L

p1
= α

L

α1

y1 = α
L

α1
= L1

α1

c2 =
(1 − α) p2

α2
L

p2
= (1 − α) L

α2

y2 = (1 − α) L

α2
= L2

α2
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Welfare Economics & Social Choice

Pareto Criterion

Pareto Domination: Allocation x Pareto-dominates allocation x′ if everyone weakly prefers x to x′ and
at least one agent strictly prefers x to x′,

xPx′ if x ≿ x′ ∀i and ∃i such that x ≻ x′

Pareto Efficiency: An allocation is Pareto-efficient if it is not Pareto-dominated.

Utility Possibility Frontier

• Fix a level of resources at x, where x = (x1, ..., xn), and where xi = (x1
i , ..., xn

i ).

• We have utility profile of individuals at x, u(x) = (u1(x), ..., un(x))

• The utility possibility frontier describes the utility of agents when we reallocate these resources, that is
it describes the utility of agents when we reallocate resources from one to another. The frontier shows
the utility gain of one individual at the expense of utility loss of another individual.

• The frontier is hence the utility maximisation given an economies’ endowment and technology.

U = {u(y) such that
∑

i

yi =
∑

i

xi}

Derivation in the two agent case:

ua(xa, ya) , ub(xb, yb) , xa + xb = wx , ya + yb = wy

The UPF is the set of all utility pairs (µa, µb) such that there exists a Pareto optimal allocation with the
property that µa = ua(xa, ya) , µb = ub(xb, yb).

Necessary conditions are,

(1) Optimality:

MRSa = MRSb ⇔
∂ua

∂xa

∂ua

∂ya

=
∂ub

∂xb

∂ub

∂yb

(2) Feasibility
xa + xb = wx , ya + yb = wy
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Social Welfare Function & Welfare Maximisation

What is the ‘best’ point on the UPF? Each SWF says a different Pareto efficient point is in fact also optimal.

Example functions,

(I) Concern for the worst off: (Rawlsian)

W (u) = mini{ui(x)}

(II) Indifferent to inequality: (Benthamite/Utilitarian)

W (u) =
∑

i

ui(x)

(III) Inequality-averse:
W (u) =

∏
i

ui(x)ai where
∑

i

ai = 1

Social Welfare Maximisation,

We maximise social welfare by choosing some SWF (from above) and optimising it with respect to the UPF
- the set of maximised utilities - by first,

(1) Fixing a resource constraint,

(2) Derive the UPF,

(3) Maximise the SWF with respect to the UPF.

First Fundamental Theorem of Welfare Economics

If (x∗, p∗) is a competitive equilibrium in the exchange economy, Then (x∗, p∗) is Pareto-efficient.

Second Fundamental Theorem of Welfare Economics

Suppose x∗ > 0 is a Pareto-efficient allocation in the exchange economy and that preferences are convex,
continuous, and monotonic. Then (x∗, p∗) is a competitive equilibrium for the initial endowments p∗w =
p∗x∗.
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Social Choice

Individuals’ preference orderings must be:

(1) Complete: All social states can be compared against one another – for any two states x and y, either
x is at least as good as y, or y is at least as good as x, or both.

x ≿ y , y ≿ x or both, that is x ∼ y

(2) Transitive: If social state x is weakly preferred to y, and y to z, then x needs to be weakly preferred
to z.

If x ≿ y and y ≿ z, then x ≿ z

(3) Continuous: The set of all social states that are at least as good as x and the set of states that are
no better than x are both closed sets.

Preference Aggregation Rule:

Maps all preference profiles into a preference ordering for society,

F (≿1, ...,≿n) =≿∗
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Arrows Impossibility Theorem & Counterarguments

Arrows Impossibility Theorem states that there is no complete, transitive purely ordinal social choice
rule for at least three social states whereby all the following conditions are satisfied:

• Unrestricted domain: F should produce a social ordering ≿∗ for any profile of individual preferences
(≿1, ...,≿n).

• Pareto-principle: If x ≿i y ∀i, then x ≿∗ y.

• Independence of irrelevant alternatives: If the individual preference orderings over x and y do not
change, F should produce the same ordering over x and y even if preferences over other alternatives
change.

• No-dictatorship: There exists no agent i, such that irrespective of the preferences of others ∀x, y if x ≿i

y, then x ≿∗ y.

Examples:

(1) Dictatorial Rule,
x ≿i y ⇔ x ≿∗ y

This ordering is complete and transitive but it does not honour ‘no-dictatorship’.

(2) Majority Rule
x ≿∗ y ⇔ {i ∈ N such that x ≿i y} ≥ {i ∈ N such that y ≿i x}

This holds except if there are more than three social states as then it is not necessarily transitive. It
may be the case that a majority of people prefer x to y and a majority of people prefer y to z, but also
a majority of people prefer z to x. See the table below for proof,

Person A Person B Person C
x y z
y z x
z x y

(3) Scoring Rule

x ≿∗ y ⇔
n∑

i=1
p(K(≿i, x)) ≥

n∑
i=1

p(K(≿i, y))

Where K() denotes social states place in i’s ordering, and the function p() assign’s points given a place
in the ordering. Therefore if x gets more points than y then x is socially preferred to y.

This fails, however, as it does not honour the independence of irrelevant alternatives,

Person A Person B
x y
y z
z x

Consider the table for now without z,

A gives x 2 point and y 1 point, B does the alternate,
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Hence both outcomes x and y get 3 points - they are equal.

Now introducing z, x gets 3 and 1 (4 points) and y gets 2 and 3 (6 points).

Hence y is now preferred by x due to the introduction of an irrelevant alternative.

Rank voting can be manipulated by introducing new alternatives that change the final ranks.

Counterarguments to Arrow

• Relax the unrestricted domain.

• Replace transitivity with quasi-transitivity (i.e. transitivity only for strict relations)

• Relax IIA - what is so bad about having lots of options? The more options might change the rankings
but that’s only because we now know much more about the people’s preferences.
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Median Voter Theorem

“If alternatives are one-dimensional and all voters have single peaked preferences, the outcome of majority
voting is the preferred option of the median voter”

Arrows Impossibility Theorem required an unrestricted domain, that F should produce a social ordering ≿∗
for any profile of individual preferences, ≿1, ...,≿n

What if we relaxed this assumption?

Person A Person B Person C
A B C
B C B
C A A

Restrict domain such that only single peaked preferences are allowed.

If all preferences are such as above and the majority rule is applied then there are no violations
of transitivity and B, the median choice wins.

We can further add a truth telling requirement to our preference aggregation rule, which no longer need
produce a complete and transitive ordering. Make it such that this social choice function,

(1) Respects citizens’ sovereignty: every possible ranking of social states is possible for some preference
profile.

(2) Strategy-proofness: no agent can report different preferences and be better off under the social choice
function,

∀i F (≿i,≿−i) ≿i F (⊵i,≿−i)

Given at least 3 social states there is no social function that meets these two criteria. Except, if agents
have single peaked preferences, then majority voting is strategy-proof!
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Worked Examples

Example: General Expression for a Contract Curve

Find an expression for the contract curve given utility functions,

ua(xa, ya) = xay3
a , ub(xb, yb) = 16xbyb

And the constraints,
xa + xb = 8 , ya + yb = 8

(1) Optimality: Find all Pareto Efficient allocations

Using MRSa = MRSb ⇔
∂ua
∂xa
∂ua
∂ya

=
∂ub
∂xb
∂ub
∂yb

y3
a

3xay2
a

= 16yb

16xb

ya

3xa
= yb

xb

(2) Feasibility: Pareto Efficient allocations within the constraints

Using 8 = xa + xb , 8 = ya + yb and ya

3xa
= yb

xb

ya = 3xa
yb

xb

ya = 3xa
8 − ya

8 − xa

8ya − yaxa = 24xa − 3xaya

ya(8 − xa + 3xa) = 24xa

ya = 24xa

8 + 2xa

Giving the Contract Curve,
ya = 24xa

8 + 2xa

Having derived the contract curve it should then be possible to derive the UPF. We can input the contract
curve into the utility functions for the agents to get utility only in terms of xa. Then by varying xa between
0 and 8 - the range of possible values for xa - we will get the UPF.
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Applied Welfare, Externalities, and Public Goods

Core Concepts

Income & Substitution Effects

• Income: How price changes affect disposable income, which affects consumption.

• Substitution: Changes in purchasing based on price changes. (Substitutes expensive good for more of
the cheaper good)

Marshallian Demand
x∗(p, m)

Which is found by solving,
max u(x) such that p · x ≥ m

• Describes how consumption varies with prices and income.

• The Marshallian demand allows us to obtain the indirect utility function,

v(p, m) where v(p, m) = u(x∗(p, m)) = ū

Hicksian Demand
x∗ = h(p, ū)

Which is found by solving,
min p · x such that u(x) ≥ ū

• Describes how consumption varies with price and utility, hence Hicksian demand looks at consumption
patterns when relative income is held constant.

• There is no income effect in Hicksian demand when prices change.

• From the Hicksian demand we can obtain the expenditure function,

e(p, ū)

• It gives the minimum amount of money needed to be spent in order to achieve some level of utility.

• In the two good case,
e(p1, p2, ū) = p1h1(p1, p2, ū) + p2h2(p1, p2, ū)
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Evaluating a Change in Welfare

Let x = (x1, x2) and p0 = (p1, p2). Suppose then there is a change in price such that p1 = (p′
1, p′

2). How
might we evaluate this change in welfare?

(1) Ordinary Model of Welfare Change,

• We can very simply quantify the change in welfare using indirect utility:

∆welfare = v(p0, m) − v(p1, m) = u(x(p0, m)) − u(x(p1, m))

• Problem: Utility is an ordinal concept, but it is important that we have a cardinal measure of welfare
since we need to be able to say by ‘how much’ a change in circumstance has improved or reduced
welfare.

(2) Cardinal Model of Welfare Change

• Instead we can consider Hicksian demand and the expenditure function,

e(p, ū) = min px such that u(x) ≥ ū

e(p, ū) = px∗ = m

• Suppose the price change p0 to p1 moves the consumers indirect utility from v(p0, m) = u0 to
v(p1, m) = u1.

• For an arbitrary price vector p′ we can measure:

– e(p′, u1) : wealth level needed to reach u1 when the price vector is p′.
– e(p′, u0) : wealth level needed to reach u0 when the price vector is p′.

∆welfare = e(p′, u1) − e(p′, u0)

This cardinal model of welfare change uses an arbitrary price vector p′, but recall our example was of a price
change from p0 to p1. This provides us with two key measures of welfare to use - dependent on which price
vector we use.

(I) Compensating Variation (CV)

• Old Utility @ New Prices

CV (p1, m) = e(p1, u1) − e(p1, u0) = m − (p1, u0)

(II) Equivalent Variation (EV)

• New Utility @ Old Prices

EV (p0, m) = e(p0, u1) − e(p0, u0) = (p0, u1) − m

For example, if prices fell such that utility increased, the EV would be the amount one would need to be
paid to get this new higher utility at the old prices, while the CV would be the amount you would pay to
have this economic change happen.
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Figure 12: Compensating vs Equivalent Variation

Quasi-Linear Framework

Quasi-linear utility functions are utility functions that are linear in one argument. In our case in which
utility functions tend to take two arguments, x and y, one of these is hence linear. We will also generally
consider the linear good to be a numeraire.

U(x, y) = u(x) + y and px + y = m

U(x, y) = u(x) + m − px

FOCs,
U ′(x, y) = u′(x) − p = 0

u′(x) = p

The marginal utility of good 1 must be equal to its price. That is the demand for good 1 depends only on
price and not income (providing income is high enough). So there is no income effect!

For example, say good x is chewing gum, good y is money spent on all other goods. I only ever buy
the same quantity of chewing gum so when my income goes up it all goes onto other goods (not chewing gum).

Benefits of this framework:

• There is no income effect which means that CV = ∆CS = EV

– Unless M is very low.

• We can do partial equilibrium analysis: just focus on one good and treat the other as a composite
good.

• We can aggregate easily: aggregate indirect utility is equal to the sum individual indirect utilities.

– Hence in cases when we are solving maximisation problems of multiple agents we can find pareto
optimality by summing the utility functions.

• Utility = money (Strong assumption)
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Welfare & Commodity Tax

Consumer Side:
max U(x1, x2) = u(x1) + x2 such that px1 + x2 = m

max U(x1, m) = u(x1) + m − px1

FOC:
U ′(x1) = u′(x1) − p = 0
u′(x1) = p

Producer Side:
max π(y1) = py1 − c(y1)

FOC
π′(y1) = p − c′(y1) = 0

p = c′(y1)

At equilibrium x1 = y1 and π = m, hence,

u′(x∗
1) = p = c′(y∗

1)
U(x1) = u(x1) − c(x1)

Figure 13: Equilibrium outcome
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With a Commodity Tax

Figure 14: Commodity Tax: left shows the actual tax; right shows a linear approximation of the left

Zooming in locally we can think of things as linear and approximate the tax revenue

u′ (x1) = p

u′′ (x′) = ∆p1 + τ

∆x1 , εD = p1

x1
dx1

dp1
,

dp1

dx1 = p1

x1εD

u′′ (x′) = p1

x1εD

c′ (x1) = p

c′′ (x′) = ∆p1

∆x1 , εs = p1

x1
dx1

dp1
,

dp1

dx1 = p1

x1εS

c′′ (x1) = p1

x1εs

DWL is given by,
u′′ (x1)∆x1 = ∆p1 + τ and c′′ (x1)∆x′ = ∆p1[

u′′ (x1)− c′′ (x1)]∆x1 = τ

∆x1 = τ

u′′ (x1) − c′′ (x1)

∆x1 = τ
p1

x1εD
− p1

x1εS

= τxεsεD

p1 (εs − εD)

DWL = ∆x1τ

2 ×

(
τ

p1

)2

× p1x1 × εSεD

(εS − εD)
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Externalities

An externality is present when an action of one agent directly affects the utility of a third party with no say
in the original transaction.

Negative Externalities Model

(1) Actual Outcome

Suppose a consumer who solves her maximisation problem,

max U(x, y) = u(x) − L(y) + z such that px + z = m

max U(x, y) = u(x) − L(y) + m − px

Where x is a demanded good; L(y) a negative externality caused by the production of x; and z is all other
demanded goods, which we think of as a numeraire.

The firm which produces x by outputting y solves,

max π = py − C(y)

Where y is the output of the good x, and C(y) is the cost associated with outputting y.

Notice that L(y) does not appear in the firms profit equation, since the externality doesn’t affect the firm
and further that the consumer cannot choose y, hence she has no influence over L(y).

FOCs,
∂U(x, y)

∂x
= u′(x) − p = 0

u′(x) = p

∂π(y)
∂y

= −C ′(y) + p = 0

C ′(y) = p

In equilibrium x = y, hence x∗ solves,
u′(x∗) = C ′(x∗)

That is that marginal benefit = marginal private cost (MB=MC)

(2) Socially Optimum Outcome

In the socially optimal case we can think of the consumer as owning the profits of the firm and managing
how the firm is run. Hence the consumer cares both about profit but also about the externality. Assume
then that the consumer/firm still gets utility from consuming x, but disutility from its production, y. Now,
however, rather than having an exogenous income m the consumers income is exactly the profit π, where
π = py − C(y).

Utility in x and y is hence,
U(x, y) = u(x) − L(y) − px + py − C(y)

Recalling that at equilibrium x = y,

U(x) = u(x) − L(x) − C(x)

FOC gives that x∗∗ solves,
u′(x∗∗) = C ′(x∗∗) + L′(x∗∗)

That is, marginal benefit = marginal private cost + marginal external cost (MB=MSC)
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Solutions to Negative Externalities

(1) Taxation: Pigouvian tax

Introduce a tax on the firms output, in which the consumer receives the tax revenue such that her income
is now,

m + ty

Where t is the tax and y is the firms output. The consumer’s FOC is unchanged since she cannot choose y,
therefore,

∂U(x, y)
∂x

= u′(x) − p = 0

u′(x) = p

The firms new profit equation is,
π = py − C(y) − ty

Giving the FOC,
∂π(y)

∂y
= −C ′(y) + p − t = 0

C ′(y) + t = p

At equilibrium x = y, and so,
u′(x) = C ′(x) + t

In order for MB=MSC , that is for u′(x∗∗) = C ′(x∗∗) + L′(x∗∗) we therefore just need to set a tax t∗ such
that,

t∗ = L′(y)

(2) Property rights: Pollution trading

Total efficient production level: y∗

Two firms A and B are endowed with permits ȳi which they can trade at price z, hence,

πi(y) = py − Ci(y) − z(y − ȳi)

FOC,
∂πi(y)

y
= p − C ′

i(y) − z = 0

Hence,
p = C ′

i(y) − z

By the same reasoning as in the tax section then we simply need to set the permit price z equal to the MSC
to ensure that MB=MSC . So,

z∗ = L′(y∗)

Coase Theorem: Irrespective of allocation of property rights, frictionless bargaining produces an efficient
outcome in the presence of externalities.

Notice that the Pigouvian tax and Property rights have the same outcome, hence which one we use theoret-
ically doesn’t matter! The both get us to the social optima.
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(3) Problem of Uncertainty

One might ask then which should we use, property rights or pigouvian taxation? In theory it make no
difference: they both generate the same outcome.

In a perfect world this is the case, however there is a problem of uncertainty in the marginal benefit - it
could be higher or lower than expected.

INSERT DIAGRAM

Solution: Set tax or quantity fixing depends on elasticity of MSC,

• Flat MSC: price fix ≻ quantity fix, hence Flat MSC ⇒ Tax.

• Steep MSC: quantity fix ≻ price fix, hence Steep MSC ⇒ Quota.

[There is no equivalent problem with uncertainty in the marginal cost - but I can’t remember why that is the
case? I think it is because the firm always produces on the MB, and wherever the Gov sets the tax/quota
the firm will produce at the intersection of that and the MB. Given that the tax & quota both generate the
same point, if the real MSC is different from the Gov’s expectation then the distance between the tax/quota
intersection with MB and the MB-MSC intersection is the same, regardless of whether or not we used a tax
or quota.]

DRAW DIAGRAM OF TAX INTERSECTING MB AND ANOTHER ONE OF QUOTA INTERSECTING
MB SUCH THAT OUTCOME IS THE SAME POINT. NOTICE THAT REGARDLESS OF WHERE
ACTUAL MSC IS, THE MARKET WILL NOT MOVE TO THE MB-MSC INTERSECTION, IT WILL
STAY AT THE TAX-MB OR QUOTA-MB INTERSECTION. HENCE THE UNCERTAINTY DOESN’T
CHANGE WHETHER A TAX OR QUOTA IS BETTER.
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Public, Common, and Club Goods

We can distinguish between types of goods into four categories based on two characteristics: excludability
and rivalrousness. Excludability refers to whether or not people can be prevented from consuming them,
while rivalrousness is whether individuals can consume them without affecting their availability to others.

Table 1: Taxonomy from Excludability and Rivalrousness

Rival Non-rival

Excludable
(Private goods)
Toothpaste
Underwear

(Club goods)
Online news subscription
Computer software

Non-excludable

(Common goods)
Fish
Water
Atmosphere

(Public goods)
National defence
Street lighting
Wikipedia

Common goods

Common goods are goods (or resources) that are non-excludable but rival. That is anyone can use them,
but if one individual consumes them, their availability to other individuals is reduced. This combination of
characteristics can result in an overuse of common resources.

Fishing Lake Model:
Consider a common lake, with a finite (rival), but non-excludable resource of fish.

Let, q = output , Li = time spent by i fishing , w = opportunity cost of time and F (L) be the function of
time spent fishing that defines output q.

Total catch is given by,

q = F (L) = F (
n∑

i=1
Li) and F ′′ < 0 (DRS)

Fisherman i’s catch,
qi = Li

L
F (L)

and i’s profit,
πi = pqi − wLi

Possible Market Outcomes:

INSERT DIAGRAM

(1) Actual Equilibrium

In equilibrium all profit opportunities are exploited as there are no barriers to entry. That is if agents are
making profit then more enter the market (lake) until profit is 0. Alternatively if agents are making losses
they leave until profit if 0.

This means that the industry profits are zero.

π = pF (L) − wL = 0

L = p

w
F (L)

39



(2) Total Catch Maximisation

Total catch is maximised at L∗∗, where,
F ′(L) = 0

(3) Socially Efficient Outcome

The socially efficient outcome L∗ is also in fact the monopolistic outcome.

It solves the profit maximisation, MR = MC,

∂π

∂L
= pF ′(L) − w = 0

pF ′(L) = w

Conclusion

The free market exploitation and overfishing, whereas fishing rights or even having a monopolist fisherman
would be more sustainable.
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Public goods

Public goods are non-excludable and non-rival. That means no one can be prevented from consuming them,
and that when individuals do use them it does not reduce their availability to others.

Street Light Model:
Consider two consumers A and B, who are deciding on the amount of street lighting to purchase for their

private road.
Let x be the public good (street lighting) and y be other private goods. Suppose that, for street lighting,
MBB > MBA.
Each consumer i ∈ A, B solves,

max ui(x, yi) = vi(x) + yi such that x + yi = mi

The FOCs are,
MRSx,yi

= v′
i(x)
1 = MBi(x) = 1

Hence,
vi(x) = 1

Ideally they would jointly demand x∗, but A knows if she does not provide any of the public good, given that
it is non-excludable, she can enjoy x∗

B at no cost. Hence in equilibrium there is an under-provision.

Funding Public Goods
In order to supply x∗ the government may tax A and B, but if A and B pay an equal amount in tax then

A is paying relatively more than B, that is A is paying more for the public good than the amount that she
wants the public good. Hence we might instead use,

(1) Lindahl pricing, The government taxes each consumer in order to alter their budget constraints such
that,

tix + yi = m and where
∑

i

ti = 1

Consumers then solve their maximisation problem, giving
v′

i(x) = ti

Call i′s demand for the public good given the tax xi(ti). The government then goes ahead and asks
each consumer for their demand for the public good given the tax and then aggregates these demands
and sets taxes at a level such that, for all consumers i and j.

xi(ti) = xj(tj) = x∗ and
∑

i

MBi(x∗) =
∑

i

ti = 1

The problem with this pricing mechanism is: what if A lies and claims that u′
A(x) = 0? In this case

A is not taxed, and hence we return to the original inefficient equilibrium where B supplies what she
demands and A uses it for free.

(2) Vickrey-Clarke-Groves Mechanisms General form:

ti = f(x−i) −
∑
j ̸=i

vj(x∗)

Where −i means that i is not included in the calculation, and f(x−i) is any function that doesn’t
depend on i′s report. For example,

ti =
∑
j ̸=i

vj(x∗
−i) −

∑
j ̸=i

vj(x∗)

Hence consumers only pay if they affect the outcome.
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Club goods

Club goods are non-rival but are excludable. Individuals can be prevented from consuming them, but
their consumption does not reduce their availability to others. Club goods can sometimes be thought of as
‘artificially scarce’ - their scarcity is created rather than natural.

Streaming Service Model
Consider a streaming service that charges a single-entry fee but then is free to use. The efficient allocation

is at x∗ but the club wants to maximise profit. If they charge a higher price, however, they may exclude
some consumers who do not demand the good at this price. This generates a DWL.

Solution: If the club has market power then they can price discriminate = no DWL = efficient.
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Worked Examples THESE NEED FINISHING

Example: Marshallian, Hicksian, Expenditure, Indirect Utility Functions

Consider the utility function,
u(x, y) = x

3
5 y

2
5

And the budget constraint,
pxx + pyy = m

(a) Find the Marshallian Demand functions

(b) Find the Hicksian Demand functions.

(c) Find the Expenditure function.

(d) Find the Indirect Utility function.

(e) What is the relationship between all of these functions?

Marshallian Demand functions:

max u(x, y) = x
3
5 y

2
5 such that pxx + pyy = m

FOC,

MRSx,y = (3/5)x−2/5y2/5

(2/5)y−3/5x3/5 = 3y

2x
= px

py

We now have two equations and two unknowns, 3y
2x = px

py
and pxx + pyy = m. Rewriting the former as

y = x 2px

3py
latter as y = − px

py
x + m

py
we can solve for the Marshallian demand,

y = −px

py
x + m

py

x
2px

3py
= −px

py
x + m

py

2xpx = −3pxx + 3m

5xpx = 3m

x = 3m

5px

And then subbing back into y = x 2px

3py
,

y = x
2px

3py

y = 3m

5px

2px

3py

y = 2m

5py

Hence the solution,
x = 3m

5px
, y = 2m

5py
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Hicksian Demand functions:

min pxx + pyy such that u(x, y) = x
3
5 y

2
5 = ū

FOC,

MRSx,y = (3/5)x−2/5y2/5

(2/5)y−3/5x3/5 = 3y

2x
= px

py

We now have two equations and two unknowns, 3y
2x = px

py
and x

3
5 y

2
5 = ū. Rewriting the former as y = x 2px

3py

we can solve for the Hicksian demand,
ū = x

3
5 y

2
5

ū = x
3
5 (x2px

3py
) 2

5

ū = x(2px

3py
) 2

5

x = ū(3py

2px
) 2

5

And then subbing back into y = x 2px

3py
,

y = x
2px

3py

y = ū(3py

2px
) 2

5
2px

3py

y = ū
(3py) 2

5 2px

(2px) 2
5 3py

y = ū
(2px) 3

5

(3py) 3
5

y = ū(2px

3py
) 3

5

Hence the solution,
x = ū(3py

2px
) 2

5 , y = ū(2px

3py
) 3

5

Expenditure function:

The expenditure function is given by,

e(px, py, ū) = pxhx(px, py, ū) + pyhy(px, py, ū)

Where hx(px, py, ū) = x and hy(px, py, ū) = y.

Therefore,
e(p1, p2, ū) = pxū(3py

2px
) 2

5 + pyū(2px

3py
) 3

5

= ūp3/5
x p2/5

y [(3
2)2/5 + (2

3)3/5]

Indirect Utility functions:
v(px, py, m) = u(x∗, y∗) = ( 3m

5px
)3/5( 2m

5py
)2/5

44



Relationships:
e(px, py, ū) = m = e(px, py, v(px, py, m))

(Expenditure is the inverse of the indirect utility function)

h(px, py, ū) = x(px, py, e(px, py, ū))

(Expenditure gives income, hence can be subbed into Marshallian demand)

h(px, py, v(px, py, m)) = x(px, py, m)

(Indirect utility gives u hence can be subbed in)
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Example: Private Provision of a Public Good

Two students, a and b, share a house. Heat for this house is a pure public good. Student a feels the cold.
Her (derived) benefit from x units of heat is:

ϕa(x) = 20x − x2

2

Student b is a hardier soul. Her (derived) benefit from x units of heat is:

ϕb(x) = 15x − x2

The heating system runs on prepayment cards. Each student can provide units of heat by purchasing cards
from a single profit-maximising heat supply firm. This firm’s cost of supplying q units of heat is:

c(q) = 2q2

Let xa denote the units of heat purchased by student a, and xb the units of heat purchased by student b.
Total heat provision is then x = xa + xb. Assume that both students, as well as the firm, take the market
price of heat as given. Assume, also, that each student takes her housemate’s purchase of heat as given.

(a) At a competitive (Nash-Cournot) equilibrium involving price p∗, student a’s purchase of the public
good, x∗

a, must maximise her utility given x∗
b . Write down this utility maximisation problem and

obtain the first order condition. Repeat this exercise for student b. Will both students purchase heat?

(b) At a competitive equilibrium involving price p∗, the firm’s public good supply, q∗, must maximise its
profits. Write down the firm’s profit maximisation problem and obtain the first order condition.

(c) Use your answers above, together with a market clearing condition, to solve for the competitive equi-
librium price, p∗, and provision of heat, q∗.

(d) Is the competitive equilibrium effcient? What would be a Pareto optimal provision of heat, qo?
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Example: Fishing Lake Problem

On an island there are 2 lakes and 16 fishermen. Each fisherman can fish on either lake. When L1 men fish
on lake 1, the total number of fish caught there is

F1(L1) = 8L1 − 1
2(L1)2

and when L2 men fish on lake 2, the total number of fish caught there is

F2(L2) = 4L2

Assume that all men on a given lake catch the same number of fish.

(a) In this unregulated situation, how may men will fish on lake 1, how many on lake 2, and how many
fish will be caught altogether?

(b) The island chief believes that she can increase the total number of fish caught by restricting the number
of men fishing on lake 1. What is the number of men fishing on lake 1 that maximises the number of
fish caught altogether, and what is the number of fish caught in this situation? Explain why the chief
is correct.

(c) Since she is opposed to coercion, the chief decides to issue permits in order to fish on lake 1. If she is
to bring about the optimal allocation of labour, how much should a permit cost (in terms of fish)?
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Example: Distribution of Externality

Consider an economy in which wealth is transferable, and where consumer a imposes an externality, h, on
consumer b, with 0 ≤ h ≤ 50. At this level of the externality, and when consumers a and b have wealth wa

and wb, respectively, consumer a has utility 10h1/2 + wa, and consumer b has utility 10(50 − h)1/2 + wb.

(a) What is the level of h that maximises consumer a’s utility?

(b) What is the level of h in any Pareto optimal allocation?

(c) Suppose b has rights to no externality, hence a must pay b in order to h, what level of h is emitted
then?

Consumer a Utility Max,
max ua(h, wa) = 10h1/2 + wa

∂ua(h, wa)
∂h

= 5h−1/2 > 0 for 0 < h ≤ 50

Hence ua is strictly increasing in h for 0 < h ≤ 50. Therefore the optimal h for a is h = 0.

Pareto Optimal Allocation,

Since we are considering quasi-linear utility functions we can sum them in order to solve for the pareto
optimal solution,

max ua(h, wa) + ub(h, wb) = 10h1/2 + wa + 10(50 − h)1/2 + wb

∂

∂h
[ua(h, wa) + ub(h, wb)] = 5h−1/2 − 5(50 − h)−1/2 = 0

h−1/2 = (50 − h)−1/2

h = 25

Consumer b Holds Rights

Suppose b has rights to no externality, hence a must pay b at some price ph in order to h.

For consumer a,
max ua(ha, wa, ph) = 10h1/2

a + wa − phha

∂ua(ha, wa, ph)
∂h

= 5h−1/2
a − ph = 0

ph = 5h−1/2
a

For consumer b,
max ub(hb, wb, ph) = 10(50 − hb)1/2 + wb + phhb

∂ub(hb, wb, ph)
∂h

= −5(50 − hb)−1/2 + ph = 0

ph = 5(50 − hb)−1/2

At equilibrium ha = hb, hence,
5h−1/2 = ph = 5(50 − h)−1/2

h−1/2 = (50 − h)−1/2

2h = 50
h = 25

Giving the equilibrium allocation h = 25 and price ph = 1.
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Example: Externalities (Taxes & Quotas)

A profit-maximising firm is deciding how much pollution to emit. Its profit depends on the level of emission
h, and the amount of money wf it has: its profit function is π(h) = wf + 24h − 2h2. The pollution affects a
consumer living nearby. The consumer’s payoff depends on the level of emission h, a parameter θ capturing
how badly the pollution affects her, and the amount of money wc she has: her preferences are represented
by the utility function ϕ(h; θ) = wc + 6θh − h2.

(a) What level of pollution will the firm choose to emit?

(b) Show that the Pareto optimal level of pollution is 4 − θ.

(c) Obtain an expression for the optimal Pigouvian tax as a function of θ.

Firm’s Optimal Pollution Emissions,

max π(h) = wf + 24h − 2h2

∂π(h)
∂h

= 24 − 4h = 0

h = 0

Pareto Optimal Pollution,

Since we are considering quasi-linear utility functions we can sum them in order to solve for the pareto
optimal solution,

max π(h) + ϕ(h; θ) = wf + 24h − 2h2 + wc − 6θh − h2

∂

∂h
[π(h) + ϕ(h; θ)] = 24 − 4h − 6θ − 2h = 0

6h = 6(4 − θ)
h = 4 − θ

Pigouvian Tax,
max π2(h) = wf + 24h − 2h2 − th

∂π2(h)
∂h

= = 24 − 4h − t = 0

t = 24 − 4h (recall h∗ = 4 − θ)
t = 24 − 4(4 − θ)
t = 8 + 4θ
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Game Theory

Core Concepts

Defining a Game

• n players i = 1, 2, ..., n

• Payoff function ui(si, s−i) that indicates a players payoff (utility/profit/etc) that depend on her own
strategy as well as the strategy of other players.

Strategies

• A (pure) strategy for player i is a plan of action, denoted si

• A mixed strategy for player i is a probability distribution over i’s set of possible actions.

• A strategy profile (s1, s2, ..., sn) specifies a strategy for each player i = 1, 2, ..., n.

• It will be useful to define the strategy profile of all players except i as,

s−i = (s1, ..., si−1, si+1, ..., sn)

• A best response strategy to s−i for player i is a strategy si that maximises her payoff function
ui(si, s−i), such that,

∀s
′

i ui(si, s−i) ≥ ui(s
′

i, s−i)

• A (strictly) dominant strategy for player i is a (strict) best response to every strategy profile s−i

of the other players, such that,

∀s−i and ∀s
′

i ̸= si ui(si, s−i) ≥ ui(s
′

i, s−i)

Dominant Strategy Equilibria

• The strategy profile s∗ is a dominant strategy equilibrium if, for every player i,

ui(s∗
i , s−i) ≥ ui(si, s−i) ∀s = (si, s−i)

• Not all games have a dominant strategy equilibrium.

Nash Equilibrium

• A Nash equilibrium is a strategy profile s = (s1, s2, ..., sn) such that each player’s strategy is a best
response to the strategies of the other players. That is, s = (s1, s2, ..., sn) is a Nash equilibrium if for
each player i = 1, 2, ..., n,

ui(si, s−i) ≥ ui(s
′

i, s−i) ∀s
′

i

• At a Nash equilibrium no player can do better by changing her strategy.

• A game can have multiple pure strategy Nash equilibria.

• A Nash equilibrium in mixed strategies is when player i chooses actions with some probability
and the other players best respond with some probability.
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Is Nash equilibrium a sensible concept?

• Rational to play your best response, once at a Nash equilibrium there is no incentive to deviate from
it.

Existence of Nash equilibrium?

• As long as finite players with continuous payoff functions and either each player has finite actions or
actions are in a closed interval, then the game has a Nash equilibrium.

Why Nash equilibrium?

• Players learn to play them (can predict how others will play and then best respond as such (or ran-
domise)).

• Nash equilibria are stable solutions.
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Useful/Commonplace Games

Prisoner’s Dilemma

No Ads Ads
No Ads 50, 50 20, 60
Ads 60, 20 40, 40

• Advertising only increases market share if the other company doesn’t advertise (assuming that adverts
are equally good).

• Nash equilibrium is (Ad, Ad), even though pareto optimal strategy is (No Ad, No Ad).

Battle of the Sexes

B F
B 2, 1 0, 0
F 0, 0 1, 2

• Here player 1 and 2 choose between B, F, where player one prefers B, player 2 prefers F, but they both
prefer going somewhere together than going alone.

• Pure strategy Nash equilibria are (B, B) and (F, F) - if any player plays B or F, the other player cannot
do better than play the same, and in the case in which both play the same action, neither can improve
her position.

• Mixed strategy Nash equilibrium to play (B with probability 1/3, F with probability 2/3) for player 2
and (B with probability 2/3, F with probability 1/3) for player 1.

– Player 1 plays B with p1 to make Player 2 indifferent

u2(B, p1) = u2(F, p1)

1(p1) + 0(1 − p1) = 0(p1) + 2(1 − p1)
3p1 = 2

p1 = 2
3

– Player 2 plays B with p2 to make Player 1 indifferent

u1(B, p2) = u1(F, p2)

2(p2) + 0(1 − p2) = 0(p2) + 1(1 − p2)
3p2 = 1

p2 = 1
3

• Why randomise like this?

– Player 2 needs to make player 1 indifferent between playing B and F in order for player 1 to
actually randomise. If player 1 is not indifferent she can increase utility by playing which ever
strategy she prefers with probability 1.
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Matching Pennies

H T
H -1, 1 1, -1
T 1, -1 -1, 1

• No pure strategy Nash equilibrium - if Column plays H, Row will play T, but if Row plays T, Column
should play T, if Column plays T, however, then Row should play H, and if Row plays H then so should
Column. . .

• Mixed strategy Nash equilibrium where player 1 plays (H with P = 1/2, T with P = 1/2) and player 2
plays (H with P = 1/2, T with P = 1/2).

– Player 1 plays B with p1 to make Player 2 indifferent

u2(H, p1) = u2(T, p1)

1(p1) − 1(1 − p1) = −1(p1) + 1(1 − p1)
2p1 − 1 = 1 − 2p1

p1 = 1
2

– Player 2 plays B with p2 to make Player 1 indifferent

u1(H, p2) = u1(T, p2)

−1(p2) + 1(1 − p2) = 1(p2) − 1(1 − p2)
1 − 2p2 = 2p2 − 1

p2 = 1
2

Location Game

Ai = [0, 1]

ui(a1, a2) =


1
2 (a1 + a1) if ai < aj

1
2 if ai = aj

1 − 1
2 (a1 + a2) if ai > aj

• Inhabitants are distributed uniformly on a beach, modeled as the interval [0,1]. On said beach there
are two ice-cream sellers who can select a location on the beach.

• Inhabitants will only buy from the nearest seller.

• The games Nash equilibrium is at both vendors placing their carts exactly half way along the beach
(a1 = 1

2 and a2 = 1
2 ).

• Why?

– Imagine that both sellers set up either side of the point 3/4 on the line [0,1] then player 1 who has
the lowers value (all less than 3/4) gets (3/4+3/4)1/2=3/4 utility and player 2 gets 1-3/4 which
is ¼ utility.
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– Hence players 2 can improve by moving towards the centre.
– Also once both players are at the centre, say player 2 moves right she now gets all the customers

to the right of her but only half of the customers in between her and player 1 (less than before).
– In a similar way if player 2 moves to the left of the centre line she gets all the customers below

her but only half of the customers between her and player 1 (less than before) hence in both
situations given that player 1 is at ½ it is not optimal for player 2 to move.

• Hence 1/2 is the highest payoff that any player can guarantee herself.

• When the sellers choose different locations deviations towards the other seller always improves the
payoff.

• Not sure if I have explained this game well, but the video linked here does a very good job: TED-Ed:
Why do competitors open their stories next to one another?
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Dynamic Games

• In previous games players choose their actions simultaneously/without observing others’ choices. Now
we will consider sets of games in which players observe other players’ actions before they must make
their own choices.

• We represent such games in extensive form.

• A subgame perfect equilibrium is a Nash equilibrium which induces a Nash equilibrium in each
subgame (it is in the set of Nash equilibrium, hence SPE is a refinement of Nash equilibrium).

Credibility and Commitment

• Players may be able to take pre-emptive actions to deter actions even if they do not ‘play first’ in the
game.

• For example suppose in a Cournot market the incumbent pre-emptively increases capital, which is an
irreversible sunk cost (hence credible). This lowers its mc and hence its BR curve shifts right, meaning
the profit of a new entrant would be lower.

For example,

• Consider the case in which firm E can choose to enter or not enter a market and firm I can retaliate
either by fighting against firm E or accommodating them into the market.

• If we first consider the game in matrix notation we find two (pure) Nash equilibrium at (Enter, accom-
modate if enter) and (Don’t enter, Fight if enter).

• When we consider the game sequentially, however, (Don’t enter, fight if enter) is not actually a reason-
able prediction. If E chooses to enter then it is always in I’s interest to accommodate, hence E should
always enter and get the payoff of one rather than zero.

• Givens E’s first mover advantage the threat by I to fight is not credible. It is never in I’s interest to
stick with that threat once E chooses to enter the market.
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Finitely vs Infinitely repeated games

Finite games

• Imagine a Bertrand style competition game in which there is a total of 10,000 consumers, 1000 of which
are loyal and 8000 of which are switchers (will choose the best price).

Low High
Low 20K, 20K 36K, 5K
High 5K, 36K 25K, 25K

• Nash equilibrium (Low, Low), but both firms do better if they can collude and maintain a high price
– although there is incentive to deviate.

• If the game is played for a finite (but potentially large) number of periods we can solve using backward
induction.

• In the last period the final subgame is exactly a one-shot prisoner’s dilemma, hence both firms choose
Low.

• In the penultimate period both players now they will defect next period, hence there is no credible
threat of future punishment to stop them from defecting now, hence again they choose Low.

• This can be repeated until the first subgame.

• SPE = (Low, Low) in each game.

Infinitely Repeated Games

• Imagine the game is repeated an infinite number of times with the discount factor , which represents
how the players weight the future against the present (they care less about the future than the present.

• A trigger strategy is one of the form: ‘Play X as long as no player chooses Y, in which case play Z
(which could be the same as Y)’.

• A grim trigger strategy is one of the form: ‘once play of Z is triggered, play Z forever’

Low High
Low 20K, 20K 36K, 5K
High 5K, 36K 25K, 25K

• Hence we can calculate the present values of different outcomes:

PVcoop =25000 + 25000δ + 25000δ2 + ...

PVcoop =25000
1 − δ

PVcheat =36000 + 20000δ + 20000δ2 + ...

PVcheat =36000 + 20000
1 − δ
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• Collusion can be sustained when,
PVcoop > PVcheat

25000
1 − δ

> 36000 + 20000
1 − δ

δ >
11
16

• Grim trigger strategies can sustain collusive outcomes when,

– Firms are sufficiently patient (δ is close to 1)
– Temptation is not too high (36,000 vs 25,000)
– The gains from long term collusion are sufficiently large (25,000 vs 20,000)

General Analysis

• A payoff pair is feasible if there is a pair of strategies that generate it

• A minmax punishment is the worst that one player can do to the other, given the other is responding
optimally. When j optimally responds to i’s minmax punishment she receives her minmax payoff.

• Folk theorem says that any feasible pair which gives each player at least her minmax payoff can be
supported as a Nash equilibrium of an infinitely repeated game if players are sufficiently patient, etc.

• SPE Folk theorem says that any feasible payoff pair which gives each player at least her stage game
equilibrium payoff can be supported as a subgame perfect equilibrium of an infinitely repeated if players
are sufficiently patient, etc.
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Worked Examples

Example: Pure & Mixed Strategies

Consider the following game:

Up Down
Left 5, 3 1, 1
Right 0, 0 3, 5

(a) Identify the Nash Equilibria in pure strategies.

(b) Is there a Nash Equilibrum in mixed strategies, where Column plays Right with probability p and Row
plays Up with probability q? If so, what is each player’s expected payoff? Is this better or worse than
a player’s average payoff across the two pure-strategy Nash Equilibria? Why?

Pure Strategy Nash Equilibrium:
(Up, Left) and (Down, Right)

Mixed Strategy Nash Equilibrium:

• There are two methods that we can use to solve for the mixed strategy Nash equilibrium:

– The Indifference method, and
– The Maximising Expected Payoff method.

(1) Indifference Method

• Row plays Up with q to make Column indifferent,

urow(Left, q) = urow(Right, q)

3(q) + 0(1 − q) = 1(q) + 5(1 − q)
3q = 5 − 4q

q = 5
7

• Column plays Right with p to make Row indifferent,

ucol(Up, p) = ucol(Down, p)

5(1 − p) + 1(p) = 0(1 − p) + 3(p)
5 − 4p = 3p

p = 5
7

• Hence the equilibrium:

(Row plays Up with probability 5
7 , Column plays Right with probability 5

7 )
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(2) Maximisise Expected Payoffs Method

EPcol = 3q(1 − p) + 1qp + 0(1 − q)(1 − p) + 5(1 − q)p
= 3q − 3qp + 1qp + 5p − 5qp

= 3q + 5p − 7qp

• And,

EProw = 5q(1 − p) + 1qp + 0(1 − q)(1 − p) + 3(1 − q)p
= 5q − 5qp + 1qp + 3p − 3qp

= 5q + 3p − 7qp

• Then notice that Row chooses q and Column chooses p, hence they will maximise their payoffs with
respect to only the parameters they can choose. This will then return the optimal strategy for the
other player.

∂EPcol

∂p
= −7q + 5 = 0

q = 5
7

∂EProw

∂q
= 5 − 7p = 0

p = 5
7

• Hence the equilibrium:

(Row plays Up with probability 5
7 , Column plays Right with probability 5

7 )

Expected Payoffs:
EPcol = 3q + 5p − 7qp

= 35
7 + 55

7 − 75
7

5
7

= 15
7

EProw = 5q + 3p − 7qp

= 55
7 + 35

7 − 75
7

5
7

= 15
7
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Example: Repeated Game & Folk Theorem

Consider the following Prisoner’s Dilemma one-shot game,

C D
C 5, 5 1, 8
D 8, 1 4, 4

Where C stands for cooperate, and D for defect.

(a) What is the unique Nash equilibrium?

(b) The players have the same discount factor δ, and the game is repeated n times. Find a Nash equilibrium
of this repeated game. Are there any others? If not, why not. If there are, what are they?

(c) Suppose instead that the game is repeated an infinite number of times. Show that when the players
are sufficiently patient, the following trigger strategies constitute a Nash equilibrium: player 1 plays
C in the first period and continues to do so until player 2 plays D, in which case player 1 switches to
D forever; player 2 plays C in the first period and continues to do so until player 1 plays D, in which
case player 2 switches to D forever. What is the critical level of δ? Do the above strategies constitute
a subgame perfect equilibrium? Why, or why not?

(d) What is a ‘minmax punishment’? What is meant by saying that a strategy is ‘individually rational’?
What is meant by saying that a payoff pair is ‘feasible’? What does the Folk Theorem have to say
about infinitely repeated games, such as the one above?

Nash Equilibrium,
(D, D)

Finitely Repeated Game,

• SPE of each subgame is the Nash equilibrium.

• Players will play (D, D) in the final stage, hence will play the unique Nash equilibrium in the penulti-
mate stage, and the one before that. . .

• Players play (D, D) in all stages.

Infinitely Repeated Game with Grim Trigger,

• If they cooperate and play (C, C) then the payoff for each player is 5. If one player cheats in the round
she cheats she gets 8, but after that the grim trigger induces the outcome (D, D) and hence a payoff
of 4.

PVcoop = 5 + 5δ + 5δ2 + ...

PVcoop = 5
1 − δ

PVcheat = 8 + 4δ + 4δ2 + ...

PVcheat = 8 + 4δ

1 − δ
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• Cooperation is sustained when the present value of cooperating (PVcoop) is greater than or equal to
the present value of deviating (PVcheat), hence,

PVcoop ≥ PVcheat

5
1 − δ

≥ 8 + 4δ

1 − δ

5 ≥ 8(1 − δ) + 4δ

5 − 8 ≥ −4δ

δ ≥ 3
4

Minmax punishment

• Player 1 minmax punishes player 2 by giving player 2 the lowest possible payoff given that player 2 is
best responding.

Folk Theorem

(1) Individually rational

• A strategy is ‘individually rational’ if it guarantees the player a payoff at least as good as her minmax
payoff.

(2) Feasible

• Payoff pair is feasible if there is a pair of strategies, one for each player, that generates it

(3) Folk Theorem:

• Any feasible pair which gives each player at least her minmax payoff can be supported as a Nash
equilibrium of an infinitely repeated game if players are sufficiently patient, etc.
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Industrial Organisation

Oligopolistic markets are made up of a small number of firms each with significant market power . In
such a market each firms profit depends on its own behaviour as well as the behaviour of other firms. Hence
interactions are strategic. In the models below we consider the strategic interactions of two firms: i = 1, 2.

Basic Structure

Cost functions:
Ci = ciqi

• In the case in which the firms are identical then we assume that c1 = c2 = c

Inverse Demand functions:
pi = αi − βiqi − γqj where i ̸= j

• Further γ > 0 since the goods are assumed to be substitutes - that is as firm j increases its output it
drives down the price for firm i.

• In the case in which the goods are perfect substitutes then α1 = α2 = α and β1 = β2 = γ hence total
demand is given by,

p = α − γ(qi + qj)

Profit (Quantity):
πi(qi, qj) = pi(qi, qj) · qi − ciqi

πi(qi, qj) = (αi − βiqi − γqj)qi − ciqi

πi(qi, qj) = (αi − ci − γqj)qi − βiq
2
i

• Notice that, for a given qj this function is strictly concave in qi. We are therefore able to find a unique
global maximum in qi for a given level of qj ,

∂πi

∂qi
= (αi − ci − γqj) − 2βiqi

0 = (αi − ci − γqj) − 2βiqi

qi = αi − ci − γqj

2βi

BRi(qj) = αi − ci − γqj

2βi

Demand functions:
qi = ai − bipi + ϕpj where i ̸= j

• It will also be useful for Bertrand competition to write quantity as a function of price. That is qi(pi, pj)
rather than pi(qi, qj).

• Notice that had we used the same parameters as we did for inverse demand, we could have made a
substitution for qj and solved for qi to write the demand function as,

qi = γ(pj − αj) + βj(αi − pi)
βiβj − γ2

qi = αiβj − αjγ

βiβj − γ2 − βj

βiβj − γ2 pi + γ

βiβj − γ2 pj
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Profit (Prices):
πi(pi, pj) = pi · qi(pi, pj) − ci · qi(pi, pj)
πi(pi, pj) = pi(ai − bipi + ϕpj) − ci(ai − bipi + ϕpj)
πi(pi, pj) = pi(ai + ϕpj) − ci(ai + ϕpj) + bicipi − bip

2
i

• Again solving for the FOC,
∂πi

∂pi
= (ai + ϕpj) + bici − 2bipi

0 = ai + ϕpj + bici − 2bipi

pi = ai + bici + ϕpj

2bi

BRi(pj) = ai + bici + ϕpj

2bi

Differentiation/Homogeneity

• We either consider the goods to be homogeneous, or we consider them to be horizontally differ-
entiated. That is the goods differ in some dimension other than quality. In this case the goods
differ marginally, and importantly subjectively such that some consumers purchase goods from one
firm, while others purchase goods from the other. Were the goods vertically differentiated, that is
differentiated objectively on quality, then when sold at the same price everyone would buy from the
higher quality producer, hence the market would not be oligopolistic.

• For examples of this think of Coca Cola vs Pepsi as horizontally differentiated products - some people
prefer Coke to Pepsi and vice-versa. For £1 a can people would buy some would be one and others
the other. For vertically differentiated products think of a 2009 model Audi vs a 2022 model Audi. At
the same price everyone would buy the newer - better quality - car.
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Cournot Competition

Cournot-Nash Equilibrium

Firms simultaneously decide what output to produce.

BRi(qj) = αi − ci − γqj

2βi
for i = 1, 2

The intersection of these best response functions gives,

qc
i =

αi − ci − γqc
j

2βi

=
αi − ci − γ

αj−cj−γqc
i

2βj

2βi

=
2βj(αi−ci)−γ(αj−cj−γqc

i )
2βj

2βi

= 2βj(αi − ci) − γ(αj − cj − γqc
i )

4βjβi

= 2βj(αi − ci) − γ(αj − cj) + γ2qc
i

4βjβi

= 2βj(αi − ci) − γ(αj − cj)
4βjβi

+ γ2qc
i

4βjβi

qc
i (1 − γ2

4βjβi
) = 2βj(αi − ci) − γ(αj − cj)

4βjβi

qc
i =

2βj(αi−ci)−γ(αj−cj)
4βjβi

1 − γ2

4βjβi

Hence finally,
qc

i = 2βj(αi − ci) − γ(αj − cj)
4βjβi − γ2

In the case in which outputs are homogeneous and the firms are identical, that is α1 = α2 = α; β1 = β2 = γ;
and c1 = c2 = c, then,

qc
i = 2βj(αi − ci) − γ(αj − cj)

4βjβi − γ2

= 2γ(α − c) − γ(α − c)
4γ2 − γ2

= γ(α − c)
3γ2

qc
i = (α − c)

3γ

Hence it is the case (due to symmetry of firms) that,

qc
1 = qc

2 = (α − c)
3γ
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How does this outcome compare with the perfectly competitive and monopolistic outcomes?

(1) For perfect competition we know that p = mc,
In the differentiated case,

pi = αi − βiq
pc
i − γqpc

j = ci

qpc
i =

αi − ci − γqpc
j

βi

=
αi − ci − γ

αj−cj−γqpc
i

βj

βi

= βj(αi − ci) − γ(αj − cj) + γ2qpc
i

βjβi

qpc
i (1 − γ2

βiβj
) = βj(αi − ci) − γ(αj − cj)

βjβi

qpc
i = βj(αi − ci) − γ(αj − cj)

βjβi − γ2

And in the homogeneous case,
p = α − γ(qpc

i + qpc
j ) = c

qpc
i + qpc

j = α − c

γ

(2) For the monopolistic case we imagine the firms combine into one firm and maximise π1 + π2, with the
FOC,

In the differentiated case,
0 = αi − ci − 2γqm

j − 2βiq
m
i

qm
i =

αi − ci − 2γqm
j

2βi

qm
i =

αi − ci − 2γ( αj−cj−2γqm
i

2βj
)

2βi

qm
i = βj(αi − ci) − γ(αj − cj)

2βjβi − 2γ2

qm
i = βj(αi − ci) − γ(αj − cj)

2(βjβi − γ2)
And in the homogeneous case,

0 = α − c − 2γ(qm
j + qm

i )

qm
j + qm

i = α − c

2γ

Differentiated Homogeneous

Cournot-Nash qc
i = 2βj(αi−ci)−γ(αj−cj)

4βjβi−γ2 qc
i = α−c

3γ

Perfect Competition qpc
i = βj(αi−ci)−γ(αj−cj)

βjβi−γ2 qpc
i + qpc

j = α−c
γ

Monopoly qm
i = βj(αi−ci)−γ(αj−cj)

2(βjβi−γ2) qm
j + qm

i = α−c
2γ
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In the differentiated case,
qm

i < qc
i < qpc

i

Hence Cournot returns a greater output (and lower price) than the monopolist, but less output (and a higher
price) than the perfectly competitive outcome.

If we sum qc
i + qc

j to get 2(α−c)
3γ we can also see in the homogeneous case that,

α − c

2γ
<

2(α − c)
3γ

<
α − c

γ

Our conclusion is as we would expect. The Oligopolist’s do better in the Cournot-Nash equilibrium than
they would do in the Perfectly Competitive one, but if they could collude to the monopolistic quantity they
would do even better. Of course collusion is not always easy to sustain. . .
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Stackleberg Competition

Firms still make output decisions, but now firm 1 announces her output first, firm 2 then follows. We
call firm 1 the market leader, and once her output has been announced it cannot be changed.

Firm 1 knows that for any given q1 firm 2 will best respond, hence firm 1 needs to optimise her own profit
given that she knows that firm 2 will best respond. That is,

max π1(q1, q2) such that q2 = α2 − c2 − γq1

2β2

π1(q1, q2) = (α1 − c1 − γq2)q1 − β1q2
1

We can use the Lagrangian,

L = (α1 − c1 − γq2)q1 − β1q2
1 − λ(α2 − c2 − γq1 − 2β2q2)

Which has the FOCs,
Lq1 = (α1 − c1 − γq2) − 2β1q1 + λγ = 0
Lq2 = −γq1 + 2λβ2 = 0
Lλ = α2 − c2 − γq1 − 2β2q2 = 0

(The reason firm 1 is optimising with respect to both q1 and q2 is that firm 1 chooses q1 directly, but further
given that firm 1 knows that firm 2 will best respond she can indirectly choose q2, since she knows the value
of q2 that will be chosen for each q1 she chooses. In this sense then firm 1 is in fact choosing q2 as well as
q1).

We can solve these FOCs and find,

qs
1 = 4β2(α1 − c1) − γ(α2 − c2)

4β1β2 − 2γ2

qs
1 = α − c

2γ
, qs

2 = α − c

4γ
,

In the differentiated and homogeneous cases respectively.

The outcome is that, while firm 1’s profit is greater than in the Cournot-Nash equilibrium, total profit is
actually lower. I show this only for the homogeneous case,

π1(qs
1, qs

2) = (α − c − γ
α − c

4γ
)α − c

2γ
− γ(α − c

2γ
)2

= (α − c − (α − c)
4 )α − c

2γ
− γ

(α − c)2

4γ2

= (α − c)2

2γ
− (α − c)2

8γ
− (α − c)2

4γ

= (α − c)2

8γ

π2(qs
1, qs

2) = (α − c − γ
α − c

2γ
)α − c

4γ
− γ

(α − c)2

16γ2

= (α − c)2

4γ
− (α − c)2

8γ
− (α − c)2

16γ

= (α − c)2

16γ
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π1(qc
1, qc

2) = (α − c − γ
α − c

3γ
)α − c

3γ
− γ

(α − c)2

9γ2

= (α − c)2

3γ
− 2(α − c)2

9γ

= (α − c)2

9γ

π2(qc
1, qc

2) = (α − c)2

9γ

And I hope from all of these equations it is obvious enough that,

π1(qs
1, qs

2) = (α − c)2

8γ
>

(α − c)2

9γ
= π1(qc

1, qc
2)

π1(qc
1, qc

2) + π2(qc
1, qc

2) = 2(α − c)2

9γ
>

3(α − c)2

16γ
= π1(qs

1, qs
2) + pi2(qs

1, qs
2)
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Bertrand Competition

Firms simultaneously decide what price to sell at.

In the homogeneous case. That is in the case in which the goods are perfect substitutes; the equilibrium
prices are,

pb
1 = pb

2 = c

This is the case since if p1 > p2 then, given the homogeneity of the products, all the consumers will buy
the cheaper product and so q2 = Q and q1 = 0, where Q = total supply. Similarly if p2 > p1 then all the
consumers will buy the cheaper product and so q1 = Q and q2 = 0. Firms hence do best by slightly under-
cutting their competitors, that is setting the price pi = pj −ϵ. This reasoning iterates down until p1 = p2 = c.

In the differentiated case,
BRi(pj) = ai + bici + ϕpj

2bi

The intersection of these best response functions gives,

pb
i =

ai + bici + ϕpb
j

2bi

=
ai + bici + ϕ

aj+bjcj+ϕpb
i

2bj

2bi

= 2bj(ai + bici) + ϕ(aj + bjcj + ϕpb
i )

4bjbi

= 2bj(ai + bici) + ϕ(aj + bjcj)
4bjbi)

+ ϕ2pb
i

4bjbi

pb
i (1 − ϕ2

4bjbi
) = 2bj(ai + bici) + ϕ(aj + bjcj)

4bjbi

pb
i =

2bj(ai+bici)+ϕ(aj+bjcj)
4bjbi

1 − ϕ2

4bjbi

Hence finally,
pb

i = 2bj(ai + bici) + ϕ(aj + bjcj)
4bjbi − ϕ2

We can simplify this further while maintaining that the goods are not perfect substitutes by setting a1 =
a2 = a; b1 = b2 = b; and c1 = c2 = c, but ensuring that b ̸= ϕ,

pb
i = 2bj(ai + bici) + ϕ(aj + bjcj)

4bjbi − ϕ2

pb
i = 2b(a + bc) + ϕ(a + bc)

4b2 − ϕ2

pb
i = (a + bc)(2b + ϕ)

(2b − ϕ)(2b + ϕ)

pb
i = a + bc

2b − ϕ
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Worked Examples

Example: Collusion

There are n firms in an industry and they have identical cost functions c(qk) = 2qp, k = 1, 2, ..., n; the inverse
demand function in the industry is p(q) = 10 − q, where q =

∑n
k=1 qk.

(a) If n = 1, i.e. there is a monopolist, what is the profit maximising quantity, qM , what will be the
resulting price, pM , and how much profit, πM , will the firm make in each period?

(b) Price setting: Each of them considers playing the following trigger strategy: charge pM in each period
(the resulting market quantity being determined by demand) as long as all the other firms have done
so in the past; if any firm deviates, then charge c for evermore. How large does δ have to be for these
trigger strategies to constitute a subgame perfect equilibrium in which collusion is sustained?

(c) Quantity setting: As an alternative, each of them considers playing the following trigger strategy:
supply qM

n in each period (the resulting market price being determined by demand) as long as all
the other firms have done so in the past; if any firm deviates, then supply the ‘Cournot quantity’ for
evermore. When n = 2, how large does δ have to be for these trigger strategies to constitute a subgame
perfect equilibrium in which collusion is sustained? What if n = 3?

(d) Hence show that when n = 2 there are values of δ for which collusion is sustainable in the price-setting
game of part (b) but not in the quantity-setting game of part (c), and that when n = 3 this conclusion
is reversed.

Monopolist Case: n = 1
max π(p, q) = (10 − q)p − 2q = 8q − q2

• FOC,
∂π(p, q)

∂q
= 8 − 2qM

0 = 8 − 2qM

q = 4M

• Giving the solutions,
qM = 4
pM = 6

π(qM , pM ) = 16

• SOC,
∂2π(p, q)

∂q2 = −2 < 0

• Hence we have a maximum.

Price Setting Case:

• Collusive Profit:
πk = π(pM )

n for all firms k.

• Deviating Profit
πk = π(pM −ϵ) ≈ π(pM ) for some very small ϵ, and just for the deviating firm k, other firms get 0 profit.
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• Punishment Profit:
πk(p = c) = 0

• Sustaining Collusion:
PVcoop > PVcheat

π(pM )
n

+ δ
π(pM )

n
+ δ2 π(pM )

n
+ ... > π(pM )

π(pM )
n(1 − δ) > π(pM )

δ > 1 − 1
n

• So as the number of firms increases, sustaining collusion becomes harder and harder. This seems like
a very intuitive conclusion.

Quantity Setting Case:

• Collusive Profit:
πk = π(qM )

n for all firms k.

• Deviating Profit:
Recall from an earlier part that qm = 4. We start with the simple assumption that the deviating firm
will set qk and all other firms continue with the monopolistic quantity qM ,

Q = qk +
n−1∑

j=1, (j ̸=k)

qM

n

= qk + (n − 1) 4
n

= qk + 4(1 − 1
n

)

Now find the price as a function of qk,

P (Q) = 10 − Q

= 10 − qk − 4(1 − 1
n)

= 6 − qk + 4
n

Now we can maximise profit for the deviating firm k,

max πk(qk) = (6 − qk + 4
n

)qk − 2qk

= 4qk − q2
k + 4

n
qk

= 4(1 + 1
n

)qk − q2
k

Giving the FOC,
∂πk(qk)

∂qk
= 4(1 + 1

n
) − 2q∗

k

0 = 4(1 + 1
n

) − 2q∗
k

q∗
k = 2(1 + 1

n
)
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Hence the deviating profit is,

πk(q∗
k)) = 4(1 + 1

n
)2(1 + 1

n
) − 4(1 + 1

n
)2

πk(q∗
k)) = 8(1 + 1

n
)2 − 4(1 + 1

n
)2

πk(q∗
k)) = 4(1 + 1

n
)2

• Punishment Profit:
All firms are identical, and at Cournot-Nash equilibrium they are all best responding to one another.
It will be useful to define for this solution Q−k, which is the quantity supplied by all firms bar firm k.

Q =
n∑

j=1
qj = qk + Q−k where Q−k =

n−1∑
j=1 (j ̸=k)

qj

Hence each firm solves,
max πk(qk) = (10 − qk − Q−k)qk − 2qk

= (8 − Q−k)qk − q2
k

FOC,
∂πk(qk)

∂qk
= (8 − Q−k) − 2qc

k

0 = (8 − Q−k) − 2qc
k

qc
k = 4 − 1

2Q−k

Given that each firm is best responding to one another, and that Q−k =
∑n−1

j=1 (j ̸=k) qj

Qc
−k =

n−1∑
j=1 (j ̸=k)

qc
j = (n − 1)qc

k

qc
k = 4 − 1

2(n − 1)qc
k

qc
k = 8

n + 1

Qc = 8n

n + 1

Finally finding the profit level,

π(qc
k) = (10 − 8n

n + 1) 8
n + 1 − 2 n

n + 1

= 64
n + 1 − 64n

(n + 1)2

= 64
(n + 1)2

• Sustaining Collusion:

PVcoop > PVcheat

16
n

+ δ
16
n

+ δ2 16
n

+ ... > 4(1 + 1
n

)2 + δ
64

(n + 1)2 + δ2 64
(n + 1)2 + ...

16
n(1 − δ) > 4(1 + 1

n
)2 + 64δ

(n + 1)2(1 − δ)
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Example: Horizontal/Vertical Differentiation and Merging
Suppose that two firms produce horizontally differentiated products. The firms compete for a single period
and choose prices simultaneously. Each firm has the same constant marginal cost of production c ≥ 0, and
fixed costs are zero. The linear demand functions are given by,

q1(p1, p2) = 100 − αp1 + βp2

q2(p1, p2) = 100 − αp2 + βp1

Assume that α > β > 0 and that 100 > αc.

Differentiation:

• Horizontal: Differentiated on preference
– At the same price some people will buy one, other people will buy the other.
– E.g. Coca Cola vs Pepsi.

• Vertical: Differentiated on objective quality
– At the same price everyone will buy one over the other.
– E.g. 2007 Volvo vs 2022 Volvo.

Bertrand-Nash Equilibrium:

• Best-Respond Functions:

max π1(p1, p2) = (p1 − c)q1 = (p1 − c)(100 − αp1 + βp2)
= (100p1 − αp2

1 + βp2p1) − (100c − αp1c + βp2c)
= (100 + βp2 + αc)p1 − (100 − βp2)c − αp2

1

Hence FOCs,
∂π1(p1, p2)

∂p1
= 100 + βp2 + αc − 2αpb

1

0 = (100 + βp2 + αc) − 2αpb
1

pb
1 = 100 + αc + βp2

2α

And so by symmetry we know,
BR1(p2) = 100 + αc + βp2

2α

BR2(p1) = 100 + αc + βp1

2α

At equilibrium,

pb
1 =

100 + αc + β( 100+αc+βpb
1

2α )
2α

= 2α(100 + αc) + β(100 + αc + βpb
1)

4α2

= (100 + αc)(2α + β)
4α2 + β2

4α2 pb
1

pb
1(1 − β2

4α2 ) = (100 + αc)(2α + β)
4α2

pb
1 = (100 + αc)(2α + β)

4α2 − β2
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And again by symmetry we find,

pb
1 = (100 + αc)(2α + β)

(2α + β)(2α − β)

pb
1 = pb

2 = 100 + αc

2α − β

• Quantities:
qb

1 = qb
2 = 100 − α

100 + αc

2α − β
+ β

100 + αc

2α − β

= 100(2α − β) − α(100 + αc) + β(100 + αc)
2α − β

= α(100 + βc − αc)
2α − β

Notice that this number must be positive. For the denominator, α > β, and for the numerator
100 > αc, β > 0, and c > 0.

Monopolist:
max πm(p) = (p − c)2(100 + p(β − α))

∂πm(p)
∂p

= 200 + 4pm(β − α) − 2c(β − α)

0 = 200 + 4pm(β − α) − 2c(β − α)

pm = 100 + c(α − β)
2(α − β)
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Example: Envelope Theorem

Consider a duopoly, with two firms producing goods that are perfect substitutes; they play a quantity-setting
game for only one period. The firms differ in their cost functions: the total cost to firm k of producing a
quantity qk is ckqk, for k = 1, 2. The inverse demand function in the market is,

p(q) = a − q where q = q1 + q2

. Assume that the firms move simultaneously.

(a) Derive the best response function of each firm. Hence find the Nash equilibrium of the game.

(b) Show that a marginal change in its own cost parameter, c1, affects its profit through three channels:
(i) the direct effect of the change in its own costs, (ii) an indirect effect via the change in its own
quantity, and (iii) a second indirect effect via the change in the other firm’s quantity.

Best Responses and Nash Equilibrium:

Optimisation Problem
π1(q1, q2) = (a − q1 − q2)q1 − c1q1

∂π1(q1, q2)
q1

= a − 2q1 − q2 − c1

0 = a − 2q1 − q2 − c1

q1 = a − c1 − q2

2
Best Response Functions,

BR1(q2) = a − c1 − q2

2
BR2(q1) = a − c2 − q1

2
Solutions,

qc
1 =

a − c1 − a−c2−q1
2

2

qc
1 = 2(a − c1) − (a − c2) + qc

1
4

qc
1 = a − 2c1 + c2

3
qc

2 = a − 2c2 + c1

3

qc = qc
1 + qc

2 = 2a − c1 − c2

3
pc = a + c1 + c2

3
Firm 1’s equilibrium profit

π1(qc
1, qc

2, c1) = (a − qc
1 − qc

2 − c1)qc
1 , qc

1 = qc
1(c1) , qc

2 = qc
2(c1)

Marginal Change in cost parameters:

Now we consider how profit changes when c1 changes. That is the change in profit wrt to c1. We must
consider all the effects c1 has on profit. This includes both its direct effect on profit, ∂π1

∂c1
, but also the

indirect effects it has on the optimal quantities, ∂qc
1

∂c1
and ∂qc

2
∂c1

.
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Accounting for all these changes using the Envelope Theorem,

dπ1

dc1
= ∂π1

∂c1
+ ∂π1

∂qc
1

∂qc
1

∂c1
+ ∂π1

∂qc
2

∂qc
2

∂c1

Calculating individually, we know that πc
1 is optimised with respect to q1, hence ∂π1

∂qc
1

= 0, further,

∂π1

∂c1
= −qc

1

∂π1

∂qc
2

= −qc
1

∂qc
2

∂c1
= 1

3

Hence overall,
dπ1

dc1
= ∂π1

∂c1
+ ∂π1

∂qc
1

∂qc
1

∂c1
+ ∂π1

∂qc
2

∂qc
2

∂c1

= −qc
1 + 0 − 1

3qc
1

= −4
3qC

1

For more on problems like this, specifically on the Implicit Function Theorem, Envelope Theorem, etc, it is
worth checking my Microeconomic Analysis Notes. The basic premise though is that if we have optimised a
function, say a profit function, with respect to q but for a given value of some parameter c, then in essence
the function has a different optimum value of q, call it q∗, for each possible value of c. In this sense then we
can think of q∗ as a function that depends on c. We say that q∗ is implicitly a function of c. Hence when
we are considering the effect of c on the optimised profit function we need to take into account not only c’s
direct effect, but further the direct effects it has on q∗, which generate indirect effects on profit. As I said
my Microeconomic Analysis Notes do a much better job of explaining this.
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Competition Policy

Competition policy is all about the FFTW, since competition (under the appropriate conditions) maximises
the total surplus.

Threats to competition: Collusion & Cartels

If effective leads to monopoly pricing. Although obviously illegal, tacit collusion is hard to prove.

An example of tacit collusion might be ‘never knowingly undersold’ (John Lewis), as this is an immediate
form of retaliation and hence incentives collusion.

Factors affecting the likelihood of collusion:

(i) Number of Firms:

• Assume an infinitely repeating Bertrand game. If you are unsure about the notation below it will be
worth reading the prior sections (Game Theory & Industrial Organisation), which explain both the
outcomes of Bertrand competition, as well as collusion vs cheating in infinitely repeated games.

• Industry profit if all the firms collude, that is set the monopoly price pM , is π(pM ). This implies that,
for n firms, each firm makes π(pM )

n .

• he payoffs each period are,

– Collusion
π(pM )

n
: By setting monopoly price pM

– Deviation
π(pM ) : By firm i undercutting all other firms with price pM − ϵ

– Punishment
0 : Bertrand Equilibrium

• Given grim trigger collusion is sustained when,

PVcoop > PVcheat

π(pM )
n

+ δ
π(pM )

n
+ δ2 π(pM )

n
+ ... > π(pM ) + 0 + 0 + ...

π(pM )
n(1 − δ) > π(pM )

δ > 1 − 1
n

• So it is harder to collude when there are more firms - this seems reasonable.

(ii) Frequency of Sales

• If goods are only sold every other period then the PV of industry profits when firms cooperate is given
by,

π(pM )[1 + δ2 + δ4 + ...] = π(pM )
1 − δ2
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• Hence for an individual firm the PVcoop is given by,

PVcoop = π(pM )
n(1 − δ2)

• And again collusion is sustained when,

PVcoop > PVcheat

π(pM )
n(1 − δ2) > π(pM )

δ2 > 1 − 1
n

• Since δ is the discount factor and δ < 1 then δ2 < δ. Therefore it is harder to sustain collusion when
transactions are less regular.

• This is intuitive: imagine the case in which a transaction was once a decade - it would be almost
impossible to sustain collusion.

(iii) Ease of Detection

• Suppose in a collusive agreement a cheating firm will not be detected by the other firms for two periods
(i.e. you can make the ‘cheating’ payoff for two periods before you get punished for breaking collusive
agreement).

• PV of payoffs for each firm is,

– Colluding:
π(pM )

n(1 − δ)
– Cheating:

π(pM )(1 + δ)

• Again collusion is sustained when,
δ2 > 1 − 1

n

• So collusion is harder to sustain when cheating is harder to detect.

(iv) Price Transparency

• It can make cheating easier to detect hence actually increase ability to punish and hence ability to
collude.

(v) Multi-market Contract

• If firms deal in multiple markets then they can punish cheaters in multiple markets, hence loss from
cheating is higher, hence collusion is easier to sustain.

(vi) Cost Asymmetry

• If firms are identical with no capacity constraints, but firm 1 has lower marginal cost than firm 2 then
full collusion would have firm 2 shutting down and firm 1 producing the monopoly quantity - perhaps
paying firm 2 side payments for this?
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(vii) Other Asymmetries

• Smaller firms/new entrants are more impatient hence more likely to cheat.

• Small firms with capacity constraints may not be able to punish deviating/cheating firms hence harder
to sustain collusion.

• Large firms selling different product varieties have more incentive to keep price higher as dropping one
price means they should drop others.

Detecting Collusion

• Look at price and cost changes over time.

• Look at evidence of sharing price information (e.g. school fee fixing scandal)

• Look for patterns that are hard to explain if there is no collusion
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Threats to competition: Anti-competitive Mergers

Types of mergers:

• Horizontal - merger between firms in the same part of the supply chain, for example Heinz and Kraft.

• Vertical - can be forwards or backwards, and refers to the merger between firms that operate in different
parts of the supply chain

• Conglomerate - merger/takeover of a firm in a completely different/unrelated sector.

Market power vs Efficiency gains

• Merger’s increase market power but can also reduce costs.

• In the diagram the merger allows the new firm to big pricing as a monopolist at , but given that costs
have fallen to the producer surplus has increase while the consumer surplus has fallen.

INSERT DIAGRAM

Measuring market power

(1) Lerner index:
L = P − MC

P

• Firm has market power if can raise price above marginal cost.

– Monopoly: L = 1
ϵ (That is the inverse of elasticity of demand)

– Perfect competition: L = 0
– Cournot: L = 1

nϵI
(That is 1

n·(the industry elasticity) )

(2) Herfindahl Index:
H =

∑
i

s2
i =

∑
i

(qi

Q
)

• Firm has market power if its market share is high.

– Monopoly: H = 1
– Perfect Competition: H = 0
– Cournot/Bertrand: H = 1

n

Do mergers always mean price increases?

(1) The Diversion Effect

• Firms A,B,C,. . . ,Z set prices to maximise profit.

• If A and B merge and A raises it price then A loses some demand and it goes to the other firms.

• But the demand that is diverted to B contributes to the joint profits of A and B.
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• Hence it is in the interest to merge and raises prices as this will likely increase profit.

• As a rule of thumb A will increase price in merger with B if,

• Where the diversion ratio is the fraction of sales lost by A that go to B.

• A simple estimate of this is the market share of B divide by the total market share of all firms (except
A who is increasing her price).

• Hence the larger the existing market share of the new partner, the greater the price-increasing effect
of the merger.

• Another thought: the relevant market

– A merger between Coca Cola and Pepsi monopolises the Cola market, but likely doesn’t have a
huge impact on the wider beverage market, especially for other products like beer, juice, etc.

– We hence need to,
∗ Estimate the own price elasticity for A and then own-price elasticity for A+B.
∗ If just A is inelastic (less than 1) then A is the relevant market and price increase would be

profitable.
∗ Even if a price increase in A wouldn’t be profitable, if a own price elasticity of A+B is less

than 1 (inelastic) then monopolising after the merger would be profitable.
∗ E.g. CMA only looked into Nestle-Perrier in terms of bottled water, since that is the only

market in which the merger would create a monopoly. They decided to allow the merger but
Nestle had to divest some water brands.

(2) Increase Collusion

• Reducing actors in the market and potentially making competition asymmetric could increase prices
via collusion.

Are mergers always anti-competitive?

• Double marginalisation: If two monopolists from different levels in the supply chain merge then the
supplier will no longer charge the seller monopoly prices, since that just eats into the overall firms
profits, hence we might lose one set of monopoly prices.
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Threats to Competition: Abuse of Market Power

Monopolies

• Monopolists can increase prices and reduces quantities, leading to DWL.

Are they always bad?

• Natural monopolies.

• Large sunk costs and the need for economies of scale means that we need a monopoly in order to be
able to get the efficient level of output (or perhaps any output).

• R&D funding: Monopolies research and introduce new ideas.

Threats to Competition: Government

• Government intervention is a form of market failure, although sometimes Government intervenes in
order to correct already occurring market failure.
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Decisions Under Risk

Core Concepts

• A (simple) lottery is a function over a set of payoffs that assigns a probability to a finite number of
the members of the set of payoffs and zero to all other members.

L = [p1, ..., pn ; x1, ..., xn], xi ∈ X, pi ≥ 0,

n∑
i=1

pi = 1

• A compound lottery is a function over a set of simple lotteries that assigns a probability to a finite
number of the members of the set of simple lotteries and zero to all other members.

C = [p1, ..., pn ; L1, ...,Ln]

– Every compound lottery can actually be thought of as simple lottery LC simply be enumerating
all possible prizes and their corresponding probabilities.

• The expected value of a lottery is given as,

EVL =
n∑

i=1
pixi

• The expected utility of a lottery is given as,

EUL =
n∑

i=1
piu(xi)

• The certainty equivalent is the amount of money which would be as good to an individual as playing
the lottery,

[1 ; CE(L)] ∼ L

u(CE(L)) =
n∑

i=1
piu(xi)

CE(L) = u−1(
n∑

i=1
piu(xi))

• The risk premium is the amount a risk averse individual will pay to get rid of the risk,

RP(L) = EV(L) − CE(L)

– If the risk premium is zero the individual is risk neutral.

• We say an individual is risk averse if,

∀L EU(L) ≤ u(EV(L))

∀L CE(L) ≤ EV(L)

∀L RP(L) ≥ 0

u′′(.) < 0 (u(.) is concave)
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• We can measure risk aversion (concavity) via Absolute and Relative Arrow-Pratt:

A(x) = −u′′(x)
u′(x)

R(x) = −u′′(x)
u′(x) x

– A higher A(x) means you are more risk averse, A(x) may be increasing, constant, or decreasing
in wealth, x. Say it is decreasing in wealth then the wealthier you are the less risk averse you get.

– A higher R(x) means you are more risk averse. If R(x) does depend on wealth then we can say
that as wealth increases you would hold a smaller (larger) percentage of your wealth in risky
assets.

• We can compare two peoples risk aversion by checking that u1(.) is more concave than u2(.). Agent 1
is more risk averse than 2 if u1(.) is a concave transformation of u2(.)

u1(.) = f(u2(.)) with f ′′(.) < 0

• Risk pooling is where two individuals are facing independent lotteries and hence share the risk by
transferring half of the winnings from the winner to the loser in the case that just one individual faces
the loss. This technique squares the probability of loss (because both must now lose) which reduces
risk.

– “Dividing up the return (+risk) from many investments(lotteries)”

• Risk sharing is where individuals buy a portion of a risky investment to reduce the spread of deviations
away from the mean.

– “Dividing up the return (+risk) from one investment (lottery)”

• Lottery L1 first order stochastically dominates lottery L2 if, for every y,

FL1(y) ≤ FL2(y)

– Notice if the probability of receiving y or less is smaller for lottery L1 than L2, then L1 must
return more than y with a higher probability.

• Given two lotteries L1 and L2 with the same expected value, we say that L1 second order stochas-
tically dominates L2 if there exists a monetary value y* such that

(1) FL1(y) ≤ FL2(y) ∀y ≤ y∗

(2) FL1(y) ≥ FL2(y) ∀y ≥ y∗

– That is the safer lottery crosses once from below.
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Graphical Representation

We will consider for this analysis the lottery,

L = [p, (1 − p) ; wL, wNL]

where the outcome L = loss, and the outcome NL = not loss. Hence we can think of p as the probability of
a loss, that is p = P(loss).

Importantly for all of this section we will define that outcome L is on the y-axis and NL on the x-axis.
Of course we could define this the other way round. In a sense it makes no difference bar for slopes of lines,
etc. The reason I choose to define it this way around is that this becomes useful/commonplace when we
start looking at insurance problems in information economics.

Core Concepts

1. The Indifference Curve is given by the iso-expected utility line.

EU = pu(wL) + (1 − p)u(wNL)

• With gradient:

MRS = −
∂EU

∂u(wNL)
∂EU

∂u(wL)
= − (1 − p)u′(wNL)

pu′(wL)

• Hence when we are on the 45° line (the certainty line) we know that wNL = wL (there is no
uncertainty), and hence we know that at this specific point,

MRS|wNL=wL
= − (1 − p)

p

2. The Fair odds line is given by the iso-expected value line.

EV = pwL + (1 − p)wNL

• With gradient:
− (1 − p)

p

• Hence the indifference curves will be tangental to the fair odds line at the certainty line.

3. The Certainty line is the 45° line which contains all certain consumption bundles.

• On this line there is no risk.

[INSERT DIAGRAM]

4. The Actuarially fair insurance case is the situation in which insurer profit is zero.

• We suppose that the insurer will offer insurance at price π per unit.
• The agent facing the lottery insures a total amount Q, up to their total loss.

L = [p, (1 − p) ; w − L, w]

Linsur = [p, (1 − p) ; w − L − πQ + Q, w − πQ]
= [p, (1 − p) ; w − L + (1 − π)Q, w − πQ]
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• We assume the insurer’s profits are given by total earnings πQ less total loss pQ. What this
really means is that the insurer receives π per unit of insurance, but has to pay out on those units
insured with probability p. In the case in which profit is zero we can solve for π,

0 = πQ − pQ

π = p

[INSERT DIAGRAM]

5. The General insurance case is when the insurer makes some positive profit and hence it is the case
that πQ − pQ > 0 and so 0 < p < π < 1. In this case of course the insured person does not earn her
EV.
[INSERT DIAGRAM]
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Expected Utility Theory

Properties of Expected Utility

I) Independence
L1 ⪰ L2 ⇔ [p, (1 − p) ; x,L1] ⪰ [p, (1 − p) ; x,L2]

II) Continuity

• Given xH > xM > xL there exists a p∗ ∈ (0, 1) such that,

[1 ; xM ] ∼ [p∗, (1 − p∗) ; xH , xL]

• Obviously for very low values of p you would prefer the first lottery, and for very high values you
would prefer the latter, but there should be some intermediate value in which you are indifferent
between the two.

Expected Utility Theorem

The following two statements are equivalent,

(1) The preferences ⪰ satisfy reduction (all compound lotteries can be reduced to simple lotteries), conti-
nuity, and independence.

(2) The preferences ⪰ corresponds to some expected utility EU(L) that uses some function u(.).

87



Risk Aversion

Absolute Arrow-Pratt (AAP):

A(x) = −u′′(x)
u′(x)

Relative Arrow-Pratt (RAP):

R(x) = −u′′(x)
u′(x) x

The reason these concavity measures are normalised with the first derivative is because we allow linear
transformations of expectated utility such that we can have u(.) and v(.) = α + βu(.). The problem with
measuring concavity is that v′′(.) = βu′′(.), hence u′′(.) ̸= v′′(.). Normalising with the first deriviate gets us
around this problem.

Arrow-Pratt Theorem

The following statements are equivalent,

(1) For every lottery, the risk premium created by u1 is larger than that of u2;
(2) u1 is more concave than u2;
(3) The Absolute Arrow-Pratt measure of u1 is, as a function, greater than that of u2.

Utility functions

Constant Absolute Risk Aversion (CARA)
A(x) = a

For example,
u(x) = −eax , a ̸= 0

Decreasing Absolute Risk Aversion (DARA)
A′(x) < 0

For example,
u(x) =

√
x , A(x) = 1

2x

Constant Relative Risk Aversion (CRRA)
R(x) = r

For example,
u(x) = 1

1 − r
x1−r , r < 1

Taylor Approximations

Let z̃ be a mean-zero random variable and π be the risk premium (the amount you would pay to get rid of
z̃). Given z̃ is mean zero we can call the expected value of this lottery x, as z̃ does not affect it.
Recall,

RP(L) = CE(L) − EV(L)
u(CE(L)) = EU(L)

u(CE(L)) = u(EV(L) − RP(L)) = EU(L)
u(x − π) = E[u(x + z̃)] (1)
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Formula for a Taylor approximation of f(x) about a:

f(x) ≈ f(a) + f ′(a)(x − a)

≈ f(a) + f ′(a)(x − a) + 1
2f ′′(a)(x − a)2

≈ etc...

Taking a first-order Taylor approximation of the LHS of (1) about x:

u(x − π) ≈ u(x) + u′(x)(x − π − x)
≈ u(x) + −πu′(x)

Taking a second-order Taylor approximation of the RHS of (1) about x:

E[u(x + z̃)] ≈ E[u(x) + u′(x)(x + z̃ − x) + 1
2u′′(x)(x + z̃ − x)2]

≈ u(x) + u′(x)E[z̃] + 1
2u′′(x)E[z̃2]

≈ u(x) + u′(x)(0) + 1
2u′′(x)(σ2)

≈ u(x) + 1
2u′′(x)σ2

Hence overall from (1) we get,
u(x) + −πu′(x) ≈ u(x) + 1

2u′′(x)σ2

−πu′(x) ≈ 1
2u′′(x)σ2

π ≈ −1
2

u′′(x)
u′(x) σ2

π ≈ 1
2A(x)σ2

So we can approximate the RP(L) when wealth x is subject to mean zero fluctuations with variance σ2 using
the equation above.
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Stochastic Dominance

Cumulative Distribution Function (CDF)

An increasing real-valued function which outputs the probability of experiencing a result below or equal to
any given value y, denoted F (y).
Example:

• Lotteries:
L1 = [12 ,

1
2 ; 30, 50]

L2 = [13 ,
1
3 ,

1
3 ; 10, 20, 40]

• CDF’s

10 20 30 40 50
CDF 1 0 0 1/2 1/2 1
CDF 2 1/3 2/3 2/3 1 1

• Plot
[INSERT DIAGRAM]

First Order Stochastic Dominance (FOSD)

Lottery L1 FOSDs lottery L2 if, for every y,

FL1(y) ≤ FL2(y)

Notice if the probability of receiving y or less is smaller for lottery L1 than L2, then L1 must return more
than y with a higher probability.
Example:

10 20 30 40 50
CDF 1 0 0 1/2 1/2 1
CDF 2 1/3 2/3 2/3 1 1

Notice that the CDF of L1 is less than (or equal to) the CDF of L2. That is if we plotted these CDFs on
the same graph the CDF of L1 would be below (or equal to) the CDF of L2 for all values of y. Hence we
can say that L1 FOSDs L2.

Mean Preserving Spread

If we have a compound lottery L2 obtained by,

(1) Playing first the simple lottery L1
(2) Adding some mean-zero noise to the prize obtained.

Then in such case, we say that L2 is a mean-preserving spread of L1. Hence L1 is preferred to L2 by risk
averse expected utility maximisers.
Interestingly the converse is also true, if L1 and L2 have the same expected value and all expected utility
maximisers prefer L1 to L2 then L2 is a mean preserving spread of L1.
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Second Order Stochastic Dominance (SOSD)

Given two lotteries L1 and L2 with the same expected value, we say that L1 SOSDs L2 if there exists a
monetary value y∗ such that

(1) FL1(y) ≤ FL2(y) ∀y ≤ y∗
(2) FL1(y) ≥ FL2(y) ∀y ≥ y∗

This is more usefully interpreted as “the safer lottery crosses once from below”. Plot out the CDF and check
by eye.
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Worked Examples

Example: Investment Problem

Charlie is an expected utility maximiser, with utility function u(y) = lny over final wealth y. Assume that
his initial wealth is 10 (we will just call his initial wealth y).
He has the opportunity to invest an amount c > 0 in a risky project: with probability 1

2 it succeeds and
he gets back his investment plus a profit of c; with probability 1

2 it fails and he gets back half of what he
invested (thus making a loss).

(a) Show that he is risk-averse, with constant relative risk aversion.

(b) What is his final wealth if he invests and the project is a success? What is his final wealth if he invests
and the project is a failure? Write down the expression for his expected utility, as a function of the
investment level c. What investment level c will he choose?

Is Charlie risk averse?
u′′(y) = − 1

y2 < 0 hence risk averse.

A(y) = −
− 1

y2
1
y

= 1
y

Charlie has DARA preferences, hence his attitudes towards lotteries is more favourable when y is large.

R(y) = −
− 1

y2
1
y

y = 1
y y = 1

Charlies preferences are also CRRA, so relative risk aversion is independent of wealth.

Investing in the project:

L =[12 ,
1
2 ; y − c + 2c, y − c + 1

2c]

=[12 ,
1
2 ; y + c, y − 1

2c]

EV(L) = 1
2(y + c) + 1

2(y − 1
2c)

EU(L) = 1
2 ln(y + c) + 1

2 ln(y − 1
2c)

Optimise EU(L):

maxc EU(L) = maxc [ 12 ln(y + c) + 1
2 ln(y − 1

2c)]

∂EU(L)
∂c

= 1
2

1
y + c

+ 1
2

− 1
2

y − 1
2 c

= 0

(y − 1
2c) = 1

2(y + c)

c = y

2
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Example: Insurance Problem

Perdita is a risk averse expected utility maximiser. Her initial wealth is w and her preferences over monetary
outcomes, y, are summarised by the utility function u(y). She is living in uncertain times { she might incur a
loss of L > 0, or she might lose nothing at all. The loss occurs with probability π, but insurance is available
at a cost of pq for an amount q of cover, i.e. she can pay a premium of pq and, in the event of a loss, she will
receive a reimbursement of q.

(a) What can you say about the signs of u′ and u′′? What does this imply for the comparison of u′(w − L)
with u′(w)?

(b) Briefly y explain why the case in which p = π is called actuarially fair.

(c) When the amount of insurance cover she buys is q, what is her expected utility? Show that the
first-order condition for her optimal choice, q∗, is

π(1 − p)u′(w − L + (1 − p)q∗) − (1 − π)pu′(w − pq∗) = 0

.

(d) By using the FOC, or otherwise, show that when the insurance premium is actuarially fair she will
fully insure, i.e. p = π => q∗ = L.

(e) What if p > π?

Utility function:

u′(y) > 0 since utility is increasing in y.

u′′(y) < 0 since utility is concave - recall we are told the agent is risk averse.

Actuarially fair case:

In this situation the insurers profit is zero (0 = πQ − pQ, hence p = π) and the insured person receives the
expected value with certainty. Expected gain or loss for the insurer is zero.

Insurance case:
L = [π, (1 − π) ; y − L + q(1 − p), y − pq]

EU(L) = πu(y − L + q(1 − p)) + (1 − π)u(y − pq)

maxq EU(L)

∂EU(L)
∂q

= π(1 − p)u′(y − L + (1 − p)q∗) − p(1 − π)u′(y − pq∗) = 0

π(1 − p)
(1 − π)p = u′(y − pq∗)

u′(y − L + (1 − p)q∗)

What if p = π?
π(1 − p)
(1 − π)p = p(1 − p)

(1 − p)p = 1
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1 = u′(y − pq∗)
u′(y − L + (1 − p)q∗)

y − pq∗ = y − L + (1 − p)q∗

−pq∗ = −L + (1 − p)q∗

−pq∗ = −L + q ∗ −pq∗

q∗ = L

What if p > π?
(1 − π)p = p − pπ and (1 − p)π = π − pπ

p > π => p − pπ > π − pπ => (1 − π)p > (1 − p)π

1 >
π(1 − p)
(1 − π)p

1 >
u′(y − pq∗)

u′(y − L + (1 − p)q∗)

u(y − L + (1 − p)q∗) > u′(y − pq∗)

Recall that u′(.) is strictly decreasing, hence for the inequality above to hold it must be the case that,

y − pq∗ > y − L + (1 − p)q∗

−pq∗ > −L + q ∗ −pq∗

q∗ < L

She underinsures in this case.
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Example: Bilateral Insurance Contracts

Arthur is risk averse, and his income tomorrow depends on which of two possible states occurs; each state is
equally likely. His income will be 8 if state 1 occurs, but only 2 if state 2 occurs.

Norma is risk neutral. Her income will be 3 if state 1 occurs, and 7 if state 2 occurs. Suppose that they can
write contracts of the form “Arthur will give Norman an amount x iff state 1 occurs, and Norman will give
Arthur an amount y iff state 2 occurs.”

(a) Draw Arthur’s indifference curves in state-contingent income space, and explain how he could be better
off if he were able to buy insurance.

(b) What shape are Norma’s indifference curves? From Arthur’s point of view, what is the best contract
that Norma would and acceptable, and why?

(c) From Norma’s point of view, what is the best contract that Arthur would and acceptable?

(d) Illustrate your results from part (b) and part (c) in an Edgeworth box, and highlight the set of effcient
risk-sharing contracts.
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Example: Stochastic Dominance

Tom the thief gets caught and fined an amount f with probability p. His initial wealth is w and his preferences
over monetary outcomes, y, are summarised by the utility function u(y). Thus his expected utility from
committing a crime is

pu(w − f) + (1 − p)u(w)

The authorities plan to increase the amount Tom expects to pay from pf to 1.01pf , by either,

(a) increasing p by 1% to 1.01p, or

(b) increasing f by 1% to 1.01f .

DRAW CDF

Show that (a) crosses once from below, hence (a) SOSDs (b), and therefore as a utility maximiser Tom
prefers (a) - so (b) is the better deterent.
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Example: Risk Pooling & Risk Sharing 1

Bill’s initial wealth is 22. He can invest it all in a risky project that has a 50:50 chance of succeeding. If he
invests and the project succeeds, his final wealth will be 40, but if it fails, his final wealth will be 10. Bill’s
preferences over monetary outcomes, y, are summarised by the utility function u(y) = lny.

(a) For Bill, what is the certainty equivalent of this project? What is the risk premium? Why should he
reject the opportunity to invest in the project?

(b) Ben has the same preferences and initial wealth as Bill, and suggests to him that they each invest 11
in the project and divide the proceeds equally, each ending with his remaining wealth plus either 40/2
after a success or 10/2 after a failure. Should Bill accept this offer to share the risk?

(c) Ben now finds an opportunity of his own to invest in a project with the same characteristics as Bill’s.
(The success or failure of one project is independent of that of the other.) Obviously he wouldn’t do it
on his own, but they could agree that each of them take on their project and then divide the proceeds
equally between them. Should they pool their risks and invest in the projects?

Bill’s Lottery, CE and RP,
L = [12 ,

1
2 ; 40, 10]

EU(L) = 1
2 ln(40) + 1

2 ln(10) = 1
2 ln(400)

EV(L) = 1
2 · 40 + 1

2 · 10 = 20 + 5 = 25

We know that u(CE(L)) = EU, hence,
ln(CE(L)) = 1

2 ln400

CE(L) = e
1
2 ln400 = 20

Further we know that RP(L) = EV(L) − CE(L), hence,

RP(L) = 25 − 20 = 5

Bill will not participate in this lottery, since his CE is the amount of money he would accept not to play
the lottery, and in this case the CE < Bill’s Wealth. Therefore Bill would rather keep his wealth of 22 then
play the lottery.

Risk Sharing Case:
L = [12 ,

1
2 ; 20 + 11, 5 + 11] = [12 ,

1
2 ; 31, 16]

This is the case because Bill is now only investing half of his wealth and Ben is investing half - they are risk
sharing. After the lottery they will have the wealth the didn’t invest (11) plus whatever the lottery returns.

EU(L) = 1
2 ln(31) + 1

2 ln(16) = 1
2 ln(496)

ln(CE(L)) = 1
2 ln496

CE(L) = e
1
2 ln496 = 22.27

22.27 > 22 hence the CE is greater than initial wealth, so it is now optimal to play the lottery.
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Risk Pooling Case:
L = [14 ,

1
2 ,

1
4 ; 10, 25, 40]

In the risk pooling case the lotteries are independent, hence whether one wins/loses does not depend on the
other. There is now just a 1

4 chance ( 1
2 · 1

2 ) that both lose; a 1
2 one wins and one loses ( 1

2 · 1
2 + 1

2 · 1
2 - since

Bill can win and Ben lose and Ben can win and Bill lose); and a 1
4 chance ( 1

2 · 1
2 ) that both win. As stated in

the question the two divide the proceeds equally, which has no impact when they both win or both lose, but
returns 10 + 40 = 50 combined in the case in which one wins and the other loses. The winner then transfers
over 15 so that they both go home with 25.

EU(L) = 1
4 ln(10) + 1

2 ln(25) + 1
4 ln(40) = 1

4 ln(10 · 252 · 40)

ln(CE(L)) = 1
4 ln(25000)

CE(L) = e
1
4 ln(25000) = 22.36

Again 22.36 > 22 hence the CE is greater than initial wealth, so it is now optimal to play the lottery.
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Example: Risk Pooling & Risk Sharing 2

Janet’s broad attitude to risk (risk averse, risk neutral, or risk loving) is independent of her wealth. She has
initial wealth w and is offered the opportunity to buy a lottery ticket. If she buys it, her final wealth will be
either w + 4 or w − 2, each equally likely. She is indifferent between buying the ticket and not buying it.

(a) Explain whether she is risk averse, risk neutral, or risk loving. Draw this situation in state-contingent
income space, with the ‘good’ outcome on the horizontal axis and the ‘bad’ outcome on the vertical
axis.

(b) She offers her friend Sam (who has the same initial wealth and attitude to risk as she does) the following
proposition: they buy the ticket together, and share the cost and proceeds equally. Should Sam accept?
Illustrate your answer in a diagram.

(c) Sam has another idea: they buy two tickets (whose outcomes are independent), again sharing the costs
and proceeds equally. Is this better than buying no tickets?

Is she risk averse?
L = [12 ,

1
2 ; w − 2, w + 4]

Given we know that Janet indifferent between buying the ticket and not then we know w = CE(L). This is
because the circumstance in which she is indifferent between playing and not is the one in which the certainty
equivalent of the lottery CE(L) is exactly equal to her wealth w. Now we just get what is larger, the CE or
the EV to deduce her risk attitude.

EV(L) = 1
2(w − 2) + 1

2(w + 4) = w + 1

Since w < w + 1 then her risk premium is positive (RP(L) = EV(L) − CE(L)), so Janet is risk averse, and
u(.) is of course concave.

Risk Sharing Case:

In the risk sharing case Janet and Sam split the ticket and hence half the losses and gains from purchasing
a ticket.

L = [12 ,
1
2 ; w − 1, w + 2]

Concavity of any function implies that f((1 − λ)x + λy) ≥ (1 − λ)f(x) + λf(y). Notice we can use this
definition for u(.) and choosing appropriate values for λ, namely that λ = 1

2 , to show,

u(w − 1) >
1
2u(w) + 1

2u(w − 2)

u(w + 2) >
1
2u(w) + 1

2u(w + 4)

If this doesn’t make immediate sense to you perhaps it is easier to show it as a more clear application of the
concavity formula:

u(w − 1) = u(1
2(w) + 1

2(w − 2)) >
1
2u(w) + 1

2u(w − 2)

u(w + 2) = u(1
2(w) + 1

2(w + 4)) >
1
2u(w) + 1

2u(w + 4)

99



Using the fact that u(CE(L)) = EU(L) and further from part (a) that CE(L) = w, we know that u(w) =
EU(L) = 1

2 u(w − 2) + 1
2 u(w + 4). Using this fact and also the inequalities above, it must be the case that,

1
2u(w − 1) + 1

2u(w + 2) >
1
4u(w) + 1

4u(w − 2) + 1
4u(w) + 1

4u(w + 4)

>
1
2u(w) + 1

2 [12u(w − 2) + 1
2u(w + 4)]

>
1
2u(w) + 1

2 [u(w)]
1
2u(w − 1) + 1

2u(w + 2) > u(w)

Given that u(w) was just the EU of the original lottery, and Janet was indifferent between the orginal and
her wealth w, it is now optimal to play this lottery.

Risk Pooling Case:
L = [14 ,

1
2 ,

1
4 ; w − 2, w + 1, w + 4]

And recognise the EU is,
EU(L) = 1

4u(w − 2) + 1
2u(w + 1) + 1

4u(w + 4)

Then notice that the inequality below holds by the fact that u(.) is strictly increasing and that in the first
line the LHS and RHS differ by just +1. From this we will be able to show that the EU is greater than u(w).

1
4u(w − 2) + 1

2u(w + 1) + 1
4u(w + 4) >

1
4u(w − 2) + 1

2u(w) + 1
4u(w + 4)

>
1
2u(w) + 1

2 [12u(w − 2) + +1
2u(w + 4)]

>
1
2u(w) + 1

2 [u(w)]
1
4u(w − 2) + 1

2u(w + 1) + 1
4u(w + 4) >u(w)

Given that u(w) was just the EU of the original lottery, and Janet was indifferent between the orginal and
her wealth w, it is now optimal to play this lottery.

100



Information Economics

In the standard GCE (General competitive equilibrium) model we make several assumptions, including that
of full, symmetric, information and no uncertainty.

The phenomenon of information asymmetries is, however, common place. These lead to inefficiencies that
require corrective measures.

Adverse Selection: Used Car Market

Suppose a market of sellers and buyers of used cars, with an equal split of ‘lemons’ and ‘plums’ (poor quality
and high quality used cars).

The buyers value the cars as least as much as the sellers hence there are gains to be had from trade.

Plums Lemons
Buyers £1200 £200
Sellers £700 £200

Case (1): 500 plums, 1500 lemons, >2000 buyers, symmetric information

• In this case buyers & sellers can both tell the lemons and plums apart.

• As the diagram shows the supply is limited in comparison to demand hence buyers purchase at the
price they exactly value the car at.

Case (2): 500 plums, 1500 lemons, >2000 buyers, asymmetric information

• In this case only sellers know the quality of the cars.

• Since all goods look the same, all will sell at the same price.

• Maximum WTP for buyers: 1
4 1200 + 3

4 200 = £450

• At this price sellers with plums will not sell, hence the only cars in the market will be lemons.

• High quality goods aren’t sold - the market unravels from the top.

Applications of Asymmetric Information

• Financial Crisis 2008 – CDOs were disproportionately becoming lemons (full of subprime loans)
and only really the lawyers and bankers who constructed them knew the real value of the underlying
loans. The problem was that these bankers and lawyers tended not to assume any risk for these
products that they were making.

• Health Insurance - The insured person knows how likely they are to claim (i.e. are they ill, likely to
be in an accident, etc). Given that health insurers can’t tell between low-risk and high-risk individuals
they set premiums high. These high premiums unravel the market as the low-risk individuals will not
pay for insurance at such a high price.

• Credit Market - Suppose A & B both wish to borrow from a bank, where A’s project pays of 1.15x
with certainty, but B’s pays of 1.3x or 0.9x with 50% chance. Given that the bank can’t tell the projects
A and B apart, should the bank charge interest rates higher than 15% A will not borrow and the bank
is left lending to just the riskier project. Higher interest rates hence only attract high-risk, high-return
projects.
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General points on Solutions to Asymmetric Information

We will consider two solutions to problems of asymmetric information: Signalling and Screening.

Signalling is where the high-quality seller takes an action that is too costly for low quality seller to imitate.
For example high-quality workers undertake education, which has a lower cost - think effort - for them than
low-quality workers, in order to differentiate themselves from the low-quality workers and hence recieve a
higher wage.

Screening is where uninformed party (or third party) takes action to screen out ‘bad’ types. For example
when you take out a low the bank checks credit history to assess the risk of default. Similarly when an
individual takes out health insurance they may have to fill in a questionnaire to assess their likelihood of
making a claim.

In the next two pages we will consider these two solutions using the model of workers and education for
signalling, and insurance for screening.

Worker/Education Problems

• Workers of high- or low-productivity can either choose to get an education or not.

• Firms would ideally like to hire high-productivity workers, but can’t tell them apart.

• In order to distinguish themselves from the low-productivity workers, the high-productivity workers
must take an education to get the higher wage, but the low-productivity workers must not want an
education themselves.

• That is the education must be costly enough that the low productivity worker doesn’t want it.

Insurance Problems

•

Principal-Agent Problems

• A principal wishes to high an agent to work for them, where the agent can exert effort eH which
increases the likelihood of high profit, or eL, which reduces the likelihood of high profit.

• If the principal wants the agent to exert eL she should just pay some fixed which makes it such that
the agent wants to work. We call this satisfying the agent’s Individual Rationality constraint.

• If the principal wants the agent to exert eH she needs to pay a variable wage package: a higher wage
if profit is high and a lower one if profit is low. This variable wage incentivises the agent to exert more
effort to generate a higher profit, and therefore get the higher wage. More specifically the wage packet
needs to be such that the agent wants to work (satisfies IR) and further that the agent does best by
exerting eH . That is the agent shouldn’t do better by secretly exerting eL rather than eH - we call
this the Incentive Compatibility constraint.

• Then the principal just needs to see in which of these circumstances she expects to make the most
profit.
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Signalling: Labour Force

Signalling is something the party with superior information can do to reduce adverse selection problems. As
a seller of a high-quality good you would benefit from eliminating information asymmetry since then you
would receive a higher price. The problem here is that sellers of the low-quality good would also like to
persuade buyers that theirs are of high-quality and hence receive the high price. You hence must take an
action that is too costly for low-quality sellers to imitate.

Model: Firms choosing over two types of worker

Suppose CRS and two types of worker, θL and θH , where 0 < θL < θH . The proportion of type H workers
is λ, that is λ = P(θ = θH).

We assume in this model that the firm is unable to distinguish the type L worker from the type H worker
without a signal. We say that workers type is unobservable.

We also assume in this model that education does not affect productivity. That is that education is only a
signal, and does not benefit the worker in anyway.

Worker’s utility is given by,
w − c(e, θ)

Cost depends on level of education and type of worker with the properties:

• c(0, θ) = 0 - no education means there is no cost
• ce(e, θ) > 0 - Cost is increasing in education
• cθ(e, θ) < 0 - Cost is decreasing in productivity - i.e. education is cheaper for more productive workers,

hence at the same wage more productive workers can afford more education.
• cee(e, θ) > 0 - 2nd derivative is positive.
• ceθ(e, θ) < 0 - the indifference curves can cross only once.

If workers choose the same education level or it is possible to imitate the signal then.

w = E[θ]

If workers choose different education levels and signal is informative then firms pay.

w(eL) = θL , w(eH) = θH

Case 1: θ is Publicly Observable

• The optimal education level for all workers is zero (e(θL) = e(θH) = 0) and firms earn zero profits
since workers are paid exactly their productivity (w(eL) = θL , w(eH) = θH).

• Obviously the problem with this case is that if type was not observable then all workers would choose
e = 0 and claim to be type H. Firms would therefore lose money as the wage per worker would exceed
the expected productivity per worker.

• This could not be an equilibrium in our case in which type is unobservable, since firms would rather
not hire any workers in this circumstance and make zero profit than make a loss.

• We will now study the actual equilibria of this model, considering cases when θ is not observable.

Case 2: Pooling Equilibria
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• Pooling = both types get the same level of education.

• The workers will both receive
w∗ = E[θ] = λθH + (1 − λ)θL

That is the optimal wage to pay a worker is her expected productivity, since the firm cannot tell which
type of worker she is. What education level, however, is it optimal for workers to choose?

(A) e = 0

• In the first case both might choose e = 0.

• If the wage curve offered by firms is too high then workers sit on the highest indifference curve without
purchasing this high education level.

(B) e = e′

• In this scenario workers choose the same positive level of education.

• This is because the firm assumes the worker is a low productivity type if they choose a level of
education below this. Again assume that the level of education at which the firm assumes they are
high-productivity is too high.

So at equilibrium: e∗ ∈ [0, e′]

• Pareto Rankings?

– π = 0 for all equilibria
– w = E[θ] for all equilibria
– Assuming a disutility of education workers would prefer an equilibrium such that e = 0.

• If e = 0 is pareto-preferred why would [0, e′] be the set of all equilibria?

– Because if firms assume that below some which is not zero a worker is a low productivity worker,
then anyone who doesn’t get this non-zero education level will only receive. It is therefore in the
interest to get some education at this equilibrium

Case 3: Separating Equilibria

• Types of workers receive wages equal to their productivity,

w∗(e∗(θt)) = θt for t = H, L

e∗(θL) = 0 , hence w∗(0) = θL

(A) e = ê

• Here the low productivity workers are indifferent between getting education and not, assuming disutility
of education they will accept e = 0 and the lower wage, while higher-productivity workers receive the
higher wage.

(B) e = ẽ
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• At this extreme the high productivity workers are indifferent between high wages and education and
low wages and no education, hence this is the highest level of education they would opt to receive.

So at equilibrium: e ∈ [ê, ẽ]

• We can Pareto-rank these equilibria since the high productivity workers would prefer lower levels of
education.

– π = 0 for all equilibria
– e(θL) = 0 and hence w(θL) = θL

– So here only the high-quality worker matters. Again assuming a disutility of education high-
productivity workers would prefer an equilibrium such that e = ê.

Is everyone better off from signalling?

• Firms never make profit hence are in different between outcomes.

• Low productivity workers are (weakly) worse off from signalling.

– They are indifferent between no signalling (e = 0) and pooling equilibria, but strictly worse off in
separating since now they only receive w = θL.

• High productivity workers depend on λ

– When λ is low then expected productivity is low, hence ID curve is higher at higher-productivity
wage and some education.

– When λ is high then expected productivity is high, hence ID at high-productivity wage may be
lower than at 0 education and expected productivity wage.

– The problem is, is that if higher productivity workers set education to 0 she may be assumed to
be low productivity, hence will not receive the expected productivity wage.
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Screening: Insurance

Where the uninformed party takes advance action to distinguish the types of individuals with hidden
information.

Model: Accident Prone vs Safe Individuals Health Insurance

Suppose consumers are risk-averse expected utility maximisers with some wealth W and some potentially
loss M which different consumers experience with different probabilities.

Consumers H have a high risk of incurring loss and consumers L have a low risk. Let λ be the fraction of
workers who are type L. Hence

λ = P(worker = L)

The average probability of incurring a loss is given by,

p̃ = λpL + (1 − λ)pH

Suppose that firms are risk neutral and competitive – hence they make zero profit. (Insurance in this case
is actuarially fair – The line on which insurance contracts are offered is the same line as the fair odds line
from the endowment point)

Insurance contracts can be thought of as (Q, R) or w0, w1, where: (1) Q is the premium and R is the
reimbursement, or; (2) w0 is wealth if no loss occurs, and w1 is wealth if loss occurs.

This contracts are in essence the same thing,

(w0, w1) = (W − Q, W − Q − M + R)

Case (1): Risk is publicly observable

• From the endowment point there are three different zero profit lines.

– 0πpL
: zero profit when only low-risk individuals get insured

– 0πpH
: zero profit when only high-risk individuals get insured

– 0πp̃: zero profit when both individuals get insured

• All types here receive full insurance so they are on the certainty line (because of perfect competition).

– Hence they are on a higher indifference curve than they would have been on without insurance.
– They are now receiving EV.

Case (2): Pooling Equilibria

• Here the point where H and L indifference curves cross on the 0πp̃ is a pooling equilibrium.

• This equilibrium is not tenable, however, since (due to single crossing) a firm could offer a contract in
the shaded region which would be at a,

– Higher ID curve for type L

– Lower ID curve for type H

– Below 0πp̃ and hence would make positive profits.

• Given that such a point exists no rational firm would offer a pooling contract as they would be left
with only type H individuals since another firm could take all the type L’s as described above.
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Case (3): Separating Equilibria

• Type H:

– The H type ID curve MUST be tangential to the 0πpH
. Were this not the case there would be

space above the H ID curve but below the zero profit line which consumers would obviously prefer
and in which firms would make profit.

– Slope of 0πpH
is,

−1 − pH

pH

– Recall that we have actuarially fair insurance which is identical to being on the fair odds line.

• Type L:

– Now for the L-types workers we have two conditions:
(1) Firms make zero profit hence contract is on 0πpH

line (otherwise incentive for firms to deviate).
(2) Type H’s must be indifference between this and their own contract.

• Overall:

– Points H∗ and L∗ on the diagram give the type H contract and the type L contract. Here type
L workers’ pay their actuarially fair premium but are not fully insured (if they were fully insured
then type H workers would rather pay this lower premium for full insurance).

• But a separating policy may not exist: The existence of a separating equilibria depends on λ - the
proportion of individuals who are type L.

• When λ is high:

– The 0πp̃ curve is steeper.
– If it is steep enough then it will intersect the L type ID curve.
– In this case the grey shaded area will be created, and in this area:

∗ L type workers prefer contracts
∗ H type workers prefer contracts
∗ Firms make positive profits.

• Hence in this situation no separating (or pooling) equilibrium exists.
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Moral Hazard: Principal Agent

Now we consider that while there might be symmetric information at the time of contracting there might be
asymmetries that arise after contracting. The principal is the firm’s owner and the agent the manager. The
principal cannot observe how much effort the agent exerts.

Model: The Principal-Agent Problem

Principle is risk neutral and agent is risk averse.

Agent chooses either high effort: e = eH , or low effort: e = eL < eH .

Gross profit,
π(e) : π = πH or π = πL < πH

High effort makes high profit more likely,

E[π | eH ] > E[π | eL]

Agent’s utility,
u(w, e) = v(w) − g(e), with v′ > 0, v′′ ≤ 0, g′ > 0

Agent’s reservation utility ū

The problem requires the principal to choose,

e ∈ (eL, eH) and w(π) to maximise E[π − w(π) | e] such that,

(1) The agent wishes to participate: Individual Rationality (IR)

E[v(w(π)) | e] − g(e) ≥ ū

• The agents expected utility from their wage (dependent on their profit) less the disutility of effort
should be as good as the utility they get from doing nothing.

• Rather minimally the agent should at least want to work for the principal.

(2) The agent wishes to choose same e as chosen by the principal: Incentive Compatibility (IC)

e maximises E[v(w(π)) | e] − g(e)

• In order to induce eH the expected utility from their wage less their disutility of working should
be higher for the higher effort than it is for the lower effort level.

• That is, it must be optimal for the agent to exert the effort level that the principal wants her to
exert.

• If the principal wants her to exert eH then it must be the case that the worker does best in terms
of her expected wages by exerting high effort.

108



Case (1): Effort is observable and risk averse agent (v′′ < 0)

• Observable effort implies that you can ignore IC.

min E[w(π) | e] such that E[v(w(π))] − g(e) ≥ ū

– Minimise the expected wage so that the worker still gets a higher utility than they would doing
nothing/doing their alternate option.

• IR binds and as agent is risk averse it is optimal to fix w(π) at w∗
eH

or w∗
eL

such that,

v(w∗
eH

) − g(eH) = ū and v(w∗
eL

) − g(eL) = ū

• Then find optimal e
maxe∈{eL,eH } {E[π | eL] − w∗

eL
, E[π | eH ] − w∗

eH
}

– Essentially what we are doing here is finding the two wages for the two effort levels and then the
principal should choose the wage that will maximise her profit.

Case (2): Effort not observable and risk neutral agent

• Risk neutral implies that v′′ = 0

• The wage in this case is conditioned only on profit.

• We can implement effort levels by ‘selling’ the project to the agent at a price α.

• That is w(π) = −α + π and the agent choose e to maximise,

E[π − α | e] − g(e)

Case (3): Effort not observable and risk averse agent

• To implement eL offer fixed wage w∗
eL

such that the IR constraint binds,

v(w∗
eL

) − g(eL) = ū

• To implement eH we pay a variable wage that depends on profit, w(π). The higher wage is paid if the
outcome of the agents work is πH and a lower wage is paid if the outcome is πL.

– In this case we need the IR & IC both to bind:
(1) The worker must want to work (IR),
(2) Further the worker must do better (in terms of expected utility) by exerting eH than exerting

eL (IC). Recall the principal can’t tell what effort level the agent is exerting, but here the
principal wants to induce eH .

– In the case in which there are two effort levels the IC gives,

E[v(w(π)) | eH ] − g(eH) ≥ E[v(w(π)) | eL] − g(eL)
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Worked Examples

Example: Adverse Selection

There are three qualities of second-hand bicycles available in equal numbers. Type X consumers and type
Y consumers have different values for each quality of bicycle,

Quality Type X Type Y
High 90 110
Medium 80 85
Low 70 60

(a) What is the social planner allocation?

Now we will assume that type X consumers are sellers (they own the bicycles), and type Y consumers do
not (they are buyers).

(b) What is the outcome with perfect information?

(c) What is the outcome when neither seller’s nor buyers know the quality?

(d) Finally, suppose that buyers do not know the quality of any particular bicycle for sale, but sellers do
know the quality of the one that they own. What will be the market equilibrium outcome?

Social Planner will allocate High to Y, Medium to Y, and Low to X.

Under Perfect Information High sells for 90-110; Medium sells for 80-85; and Low does not sell. Whether
these sell at the upper range, lower range, or somewhere in the middle of the range depends on two things.
First is whether we have excess demand or supply, second is how the auction/bargain is being conducted.

Under Symmetric Imperfect Information,

E[Y ] = 1
3110 + 1

385 + 1
360 = 85

E[X] = 1
390 + 1

380 + 1
370 = 80

So the bikes will sell for a price between 80-85, again dependent on supply/demand, and further the auction
scheme.

Under Asymmetric Information,

The E[Y ] = 85, hence type X sellers will not sell the high-quality bikes.

Then the E[Y | no high bikes] = 72.5, hence medium quality bikes won’t sell either.

The E[Y | low] = 60, so low bikes won’t sell either since sellers value then at 70.

Therefore no bikes will sell and the market unravels from the top.
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Example: Signalling & Education
There are two types of worker: L-types with low productivity θL, and H-types with high productivity θH ;
each worker knows their own type. Many risk-neutral firms compete for the services of the workers, but they
cannot observe a worker’s type.

(a) Explain why some of the workers would like to be able to signal their type to the firms. What would
make the signal credible?

Suppose that θL = 80, θH = 100, and that there are three times as many L-types as H-types; the workers
have no outside opportunities.

(b) What is the market equilibrium outcome if no signal is available?

(c) Suppose the workers can acquire an education, observable by the firms. This would cost 22 for an
L-type, but only 12 for an H-type. Characterise the unique market equilibrium.

(d) How would the analysis in part (c) change if education costs were 18 for an L-type, and 16 for an
H-type?

How and why signal?
H would like to signal in order to get a wage equal to her productivity, rather than just receive a wage equal
to average productivity.
In order to be feasible for H the cost of the signal must be less than the difference between wage for H’s
productivity and the average wage, and in order to be credible the signal must be too expensive for L to copy.

If no signal is available then,
w∗ = E[θ] = 1

4100 + 3
480 = 85

The separating equilibrium is,
uH = w(θH) − c(1, θH) = 100 − 12 = 88
uL = w(θL) − c(0, θL) = 80 − 0 = 80

This is optimal for type H’s, since utility of 88 is better than a utility of 80 - recall that if a type H doesn’t
get an education then she is assumed to be a type L and hence receives the θL wage.
Notice that L wouldn’t deviate either. Should she decide to copy the signal and get an education her utility
is,

uL = w(θL) − c(1, θL)
= 100 − 22 = 78

Which is lower than had she not taken an education at all.

What if education costs 18 for type L’s, and 16 for type H’s?
uH = w(θH) − c(1, θH) = 100 − 16 = 84
uL = w(θL) − c(0, θL) = 80 − 0 = 80

But notice that now it would be optimal for type L’s to copy the signal, since,
uL = w(θL) − c(1, θL)

= 100 − 18 = 82

With no separating equilibrium there is a pooling equilibrium of 85, which no one would want to deviate
from.
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Example: Principal-Agent Problem

A risk-neutral principal can hire a risk-averse agent to undertake a project. There are two possible profit
outcomes, πH and πL such that πH > πL > 0; assume throughout that πL = 60. The agent can exert effort
e = 0 or e = 1. Importantly,

P[πH | e = 0] = 2
5

P[πH | e = 1] = 3
5

The agent’s utility function based on wages and effort is, u =
√

w − e and the agent has reservation utility
ū = 8.

(a) Find the optimal contract given Observable Effort and [π | eH ] = 195.

(b) Find the optimal contract given Unobservable Effort and [π | eH ] = 195.

Observable Effort,

By ‘observable’ we mean contractible - that is the principal can contract the agent to exert a certain effort
level. Hence we can ignore the IC constraint since the agent will always comply with the contract. Only IR
matters, and whats more in order to maximise profit it must bind.

Wages, where w1 is the wage given e = 1 and w0 the wage given e = 0,
√

w1 − 1 = 8
w1 = 81

√
w0 − 0 = 8

w0 = 64

Supposing [π | eH ] = 195 and [π | eL] = 60,

E[π | e = 1] = 3
5195 + 2

560 = 141

E[π | e = 0] = 2
5195 + 3

560 = 114

E[π | e = 1] − w1 = 141 − 81 = 60
E[π | e = 0] − w0 = 114 − 64 = 50

Since E[π | e = 1] − w1 > E[π | e = 0] − w0 then high effort is optimal to induce.

Unobservable Effort,

We can induce e = 0 simply by offering the same wage as in the oberservable effort contract. This is because
to work with minimal effort we only need the agent to weakly prefer working to doing otherwise. Hence the
utility of her work must be as good as her reservation utility. That is only IR need hold.

To induce e = 1,

Let vj =
√

w(πj), and recall our constraints: IR and IC,

IR : E[v(w(π)) | e] − g(e) ≥ ū

IC : maxe E[v(w(π)) | e] − g(e)
In order to optimally induce e = 1 we need it to be the case that the agent would rather work at the higher
wage and exert effort e = 1 than get her reservation utility - hence IR must hold. Similarly it must be the
case that the agent would rather exert e = 1 than take the variable wage packet offered to induce e = 1, but
secretly only exert e = 0 - hence IC must bind.

112



IR implies,
3
5vH + 2

5vL − 1 ≥ 8

3vH + 2vL ≥ 45
IC implies,

3
5vH + 2

5vL − 1 ≥ 2
5vH + 3

5vL − 0

vH − vL ≥ 5
Recognise that, since the principal sets wages and hence vi, further the principal wishes to maximise π, both
of these constraints will bind.

We can then solve simultaneously,
vH − vL = 5

3vH + 2vL = 45
vH = 11 , vL = 6

Hence,
w(πH) = 121 , w(πL) = 36

When πH = 195 will the principal want to induce e = 0 or e = 1?

E[π − w(π) | e = 1] = 3
5(195 − 121) + 2

5(60 − 36) = 54

E[π − w(π) | e = 0] = 2
5(195 − 36) + 2

5(60 − 36) = 50

Since E[π − w(π) | e = 1] > E[π − w(π) | e = 0] the principal will pay the variable wage packet (121, 36) to
induce e = 1.
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