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Abstract

These are my Macroeconometrics notes made for my finals in 2022. They cover all of the topics. Feel
free to use these notes and pass them on to others. Please note, however, that these have just been made
by a student and not checked over. They likely contain errors, so it will be worth checking things for
yourself. Thanks to Kevin Sheppard, Vanessa Berenguer Rico and Bent Nielsen - these notes are just
my interpretation of their lectures and tutorials.
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Need to know Theorems

Chebyshev iid LLN

Theorem (Law of Large Numbers by Chebyshev)

For i = 1,...,n let ; be independent and identically distributed with finite mean, x, and variance ¢2. Then,
as n — 00,

Lindeberg-Levy iid CLT

Theorem (Central Limit Theorem by Lindeberg-Leuvy)

For i = 1,...,n let z; be independent and identically distributed with finite mean, p, and variance o2. Then,
as n — 0o,

g

Multivariate iid CLT

Theorem (Multivariate Lindeberg-Levy CLT)

Let Z; for i = 1,...,n be independent and identically distributed m-dimensional random vectors with finite
mean vector uy = E[Z;], and finite positive definite covariance matrix ¥z = E[(Z; — puz)(Z; — pz)']. Then

Vil Zi = pz) = N(Om, Sz)

where Z, = n~! Yo, Z; and N(0,,,X7) is multivariate normal.

Covariance Stationary LLN

Theorem (Law of Large Numbers)

Let y; be a covariance-stationary process with F (y;) = p and v, = Cov (y¢, y+—n) and absolutely summable
autocovariances so that Y, |vs| < co. Then as T — oo,

=l

T
1 P
Z Yt — 122
t=1

Why require absolutely summable autocovariences?

Because for a weakly stationary process a sufficient condition for mean square convergence (which
implies convergence in probability) is,

o0
Z |7n| < oo where v, = Cov (y¢, yt—n)
h=0

What this means is that a sufficient condition for a process to mean square converge is that the covariances,

although can initially be non-zero, must at some point tend to zero - hence they are absolutely summable.

The intuition of this is that eventually covariances like Y1000 = ¢ov (¥, ¥++1000) should be zero if the process
is really stationary and E[y;] really converges to p. This implies that the sum of all the covariances should
be less than infinity.



Wold Decomposition CLT

Theorem (Central Limit Theorem)
If yp = p+ ¥(L)u; where uy ~ iid (0, 02) and Z;‘io || < oo, then as T — o0,

VT (gr — p) = N (07 > %)

h=—o00

where > 2 __v; = 02¥?(1) is the long run variance.

Stationary AR CLT

Theorem (Central Limit Theorem for AR processes)
Let y; be a stationary AR(p) process with F (y;) = p and v, = Cov (y¢, yt—p). Then,

\/T(QT—M)AU\I(O, > %)-

h=—o00

Mds LLN

Theorem (Law of Large Numbers)

Let (my,Z;) for t € N be a martingale difference sequence. If one of the following conditions holds

(a) S0, E|my|""P /1P < oo for some p € [0, 1],

T

(b) lim max;<r E |my < oo for some p € [0,1],
—>00 -

T

then, as T — oo,

Mds CLT

Theorem (Central Limit Theorem)

Let (my, ;) for t € N be a martingale difference sequence satisfying Em? < oo for all t. Let S2 = Zthl Em?2.
Suppose

T
(i) > mi/SF =1,
T
(i) S E {(mt/sT)2 1(‘mtST|>5)} — 0 for all § > 0,

then



Remark: The Lindeberg condition (%)

T
Z E {(mt/ST)2 1(|mt/sT\>5)} — 0,

t=1

for all 6 > 0 follows from the Lyapounov condition

T
@) Y Elm/Sr[* —0
t=1

for some § > 0.

Slutsky’s Theorem

Theorem (Slutsky Theorem)

Let Y, i> c and X,, i) X, then:

Wold Decomposition
Theorem (The Wold Decomposition)
If x; is stationary and non-deterministic, then
Ty = Z \I/jut_j + 2z = \II(L)ut + 2
§=0
Where,

e Uy=1and Z?‘;O\P? < oo

o uy is wn(0,0?%)

e 2; is deterministic

o Cov(ut,z:) =0 for all s and ¢

e U, and u; are unique.



Some Laws, Tricks, and Terms

Series and Summations

The ‘T’ Rules

T
ZI:T
t=1

T

L T(T +1
;t=Z(T+1—t)=(2+)

t=1

o, T(T+1)2T +1)
2

Geometric Series

1
1—1r 1—r [ #1
k=0 -1
Infinite: iark -4 iark_l =2 {|7"| < 1}
' P 1—7r — 1—7r

Useful Result

Stationarity

Strict Stationarity

The time series {Y: ¢ € Z} is strictly stationary if the joint distributions (Y3, Yii1,...,Ye4k) =
(Ys,Ysq1,...,Ysay) for all ¢, s and k.

Weak Stationarity

The time series {Y;,t € Z} is weakly stationary if:

(i) E[Y:] =m for all ¢
(i) Var(Y:) = 0% < oo for all t.
(iii) Cov(Y:,Ys) = Cov(Yiyn, Ysqn) for all ¢, s, h € Z.
(iii") Cov(Yy, Yi—p) = yp, for all h (this is equivalent to (iii)).

That is the mean, variance, and covariance do no depend on ¢t. They are time tnvariant.

If a process is Gaussian Normal then strict and weak stationarity coincide



Martingale Difference Sequence

Let m; be a sequence of random scalars with E (m;) = 0 and let Z; be the information available at date t,
so Z; will include current and past values of {m;}, as well as current and past values of any other random
sequences, such as perhaps {x;}.

Ty = {mg, My—1, M2, -, T4, Ty 1, T2, -+ -}

If E(my | Zy—1) = 0 then {m;} is said to be a martingale difference sequence with respect to {Z;}.

E (my | Zy—1) = 0 implies that {m.} is serially uncorrelated (stronger assumption than uncorrelatedness but
weaker than independence.)



Lag Operator

Properties
Lyt = y1—
L(Lyt) = L (yi—1) = yi—2 hence L7 (y;) = y;
Lp=p
L pyr = pye—

Ly 4+ x¢) = ye—1 + 241

Using Lag Polynomials

Let’s consider the AR(1) case,
Yt = QYr—1 +

We can rewrite the model using the lag operator after doing some basic algebra,

Yt — Pyr—1 = uy
(1=oL)y: = w
®(L)y; = uy where ®(L) =1 — ¢L

This doesn’t immediately seem useful, but it allows us to simplify more complicated models, for example
the AR(p) model,

Yo = O1Ye—1 + P2Yi—2 + ... + OpYr—p + Ut

Yo — P1Ys—1 — P2Ye—2 — .. — PpYt—p = Uy
(1= 1L — ¢oL? — ... — ¢ LP )y = uy
®,(L)y; = us where ®,(L) =1 — ¢ L — ¢poL* — ... — $,LP

And the ARMA (p,q) model,

Yo = P1Ye—1-- -+ OpYr—p+ur + w1+ ...+ 0gus—q

AR(p) MA(q)
Yo — O1Ye—1 — P2Yt—2 — - .. — GpYi—p = U + O1up—1 + Ooup_o + ... + Oqui—q
(1—¢1L —¢oL® — ... — ¢pLP) yy = (L 4+ 61 L+ 0L + ...+ 0,L9) uy
Pp(L)y: = Og(L)uy
Where ®,(L) = (1 — ¢1L — ¢poL* — ... — ¢, L),

and Oy = (146, L+6:L% + ...+ 6,L7).

10



Inverse Lag Polynomial

Using lag polynomials also allows us to ‘switch’ between representations, such as AR (auto-regressive) and
MA (moving-average). We can do this by inverting the lag polynomial. Recall in the AR(1) case

O(L)y: = uy where ®(L) =1 — ¢L
Well if we want to get the MA representation (y; in terms of the lags of u;), we simply invert ®(L),

Yt = {(I>(L)}_1 uy where ®(L) =1 — ¢L

Conditions for Invertibility

In order to be able to invert a lag polynomial we must have roots of the polynomial outside of the unit
circle.

If the roots of a polynomial are inside the unit circle then the coefficients do not decay sufficiently fast for
the error term to be a well-defined random variable with finite variance. More technically when the roots are
inside the unit circle the infinite sum does not converge in mean square.

Note that this only really matters for AR model, since as long as an M A model is finite then you can always
find an equivalent and invertible MA polynomial. Of course you still need to check roots for both
models though; it is just that if an MA polynomial is not invertible you can always find an equivalent model
that is invertible.

Finding Roots of Lag Polynomial

The roots of the lag polynomial are very simply just the values of L when ®(L) = 0. We will consider two
very simple cases for finding these.

(1) First Order Difference Equation

Yt = Qyr—1 +
(1= oL)y: = we
Q(L)y: = uy
So we have the lag polynomial,
®(L)=1-¢L

Which has roots when,

@(L):0:>1—¢L:0:>L:%

Hence the roots of this polynomial are at L = i

(2) Second Order Difference Equation
Yt = P1yt—1 + P2yt +wt

Using lags,
(1 —¢1L — ¢2L2) Yt = Wt
Find roots of lag polynomial, 1 — ¢ L — ¢»L? = 0, using,

_ —bEVb? —dac

L
2a

11



The Unit Circle

To be able to invert a polynomial it must be the case that all the polynomials roots are outside
of the unit circle. That is we need all the values of L at ®(L) = 0 to be outside the unit circle.

'

+1

|

An imaginary number bi is outside the unit-circle if |b] > 1.
A real number a is outside the unit-circle if |a| > 1.

A number with a real and imaginary part a + bi is outside the unit circle if Vb2 + a2 > 1

Inverting the Lag Polynomial in the AR(1) case

Yr = QYp—1 + Uy
(1-9L)y: = w
‘I)(L)Z/t = Ut

We can only invert the polynomial ®(L) if its roots are outside of the unit circle. The roots of the lag
polynomial, that is the value of L when ®(L) = 0, are given by,

0=<I>(L):>O:1—¢L:>L:é

The roots being outside unit circle requires that |L| > 1, hence the lag polynomial ®(L) is only invertible in
the case in which |¢| < 1.

Supposing that we are in the case in which |¢| < 1, therefore,

Where,

12



Inverse Lag Polynomial: Infinite Sum

We can always turn an inverted lag polynomial into an infinite sum lag polynomial. This is useful when
switching between forms, such as from AR to MA, since leaving an inverted lag polynomial has little meaning
to us.

What this means is, if we consider a pure AR(p) model,
(I)p(L)(Et — &t
We can also write this as,

ze={Pp(L)} e

And we can write this inverted lag polynomial as an infinite lag polynomial, such that we get an MAoco
model,
2y = U (L)es

In other words it is always the case that

1
1+ 1L+ L2+ ¢pLP

{@p(L)} " =14+ L+l + ... =V (L)

Proof

The proof of this really just comes from the law for infinite geometric sums stated above,

oo a

E ar® = —— for |r| < 1
1—r

k=0

This law shows that an inverse polynomial of degree one can be written as an infinite sum. This implies
that in our AR(1) case,

ﬁ22¢k:1+¢+¢2+¢3+... for |¢| < 1
k=0

In the case of a finite polynomial of degree p we just need to write it in its factorised form,

p
(L) =1+ ¢ L+ ¢52L2 + ..ppLP = H (1 _ r£)

i=1 i
Where 71, ..., 7, are the roots of the polynomial.

Having written the p* degree polynomial as a product of first degree polynomials, invert and apply the law
from above,

-1 2 A Ay R SN > ,
{%(L)} =11 (1 - f) =11 (Z (f) ) =D WL =1+ L+l + . = Voo (L)
i=1 Ti i=1 \ j=0 Ti =0
Which holds if |r;| > 1 for all ¢ = 1,...,p (if the roots are outside of the unit circle).

Hence,
1

T 1+ L+ hal2 + gy LP

{®p(L)} " — 1+ L+ oL+ ... = Uy (L)

13



Example: General Case

We have already shown the AR(1) case, so lets consider the AR(2) case,

Yr = P1Yt—1 + P2y 2 + uy
Yt — P1Yt—1 — P2yt—2 = Uy
(1 —¢1L — ¢2L2)yt = Ut
1
T TGl gL

- {%(L)}_lut

We now know that is possible to write this model as an MAoco model by writing the inverted polynomial of
degree two as an infinite geometric sum.

Yt

{@2(11)} T 1oL —l? Yo + 1L+ oL+ 3L’ 4 ... = Ueo (L)

To calculate the values of ¢1, ¢, etc we know it will the case that,

(1= ¢1L — $2L?) (o + 1L + oL + 5L +...) = 1
Or perhaps more obviously that,

(1= ¢1L — ¢2L?) (o + 1L + 92 L? + L3 +...) = 1+ 0L +0L? + 0L3 + ...
By multiplying out the brackets and matching up coefficients of L we find that,

=Yg =1
=1 — g1 =0

= g — P11 — Patpo = 0
= 3 — a1 — Y192 =0

= ; — Y101 —Yj_2¢2 =0

Example: Specific Case

Now we can counsider a specific example. Take this ARMA(2,2) model and express it into MA form,
e = 1.1wi_1 — 0.8%4—o + us — 1.7Tus—1 + 0.72us_o
We can begin by writing it using lag polynomials,
(1-1.1L+08L%) 2 = (1 — L.7L + 0.72L%) g

Of course before we try and invert the polynomial on z; we need to check that it can be inverted: that the
roots are outside of the unit circle. Given that, in this case, they are, we can write it as,

(1—1.7L +0.72L?)
(1—-1.1L + 0.8L2)

Ty = Ut

Where we know it will be the case that,

(1—1.7L +0.72L2)
(1—1.1L+0.8L2)
(1-1.7L+0.72L%) = (1 — 1.1L + 0.8L?) (6o + 1L + 62 L* + 63L° + ...)

= (0 + 61 L + 6oL% + 55L% +..)

14



Multiplying out the brackets on the RHS,

=6 +06 L+ 6L* 460 +...
—1.160L — 1.16; L% — 1.16,L3 + . ..
+0.850L? +0.80, L% + ...

=0 + (61 — 1.160) L + (82 — 1.101 + 0.850) L? + (63 — 1.165 4+ 0.86;) L + ...

Finally we can set these coefficients equal to the coefficients that we know from the LHS,

8o =1

51— 1.16g = —1.7

85 — 1.161 + 0.85 = 0.72
35— 1.10, + 0.86; =0

And so this implies,

dop=1
=40, =-0.6
= 0y = —0.74
= 03 = —1.614

= (5]‘ = 1.1(5j_1 — O.S(Sj_g (j > 2)

15



AR(p)

AR(p) is an autoregressive model of order p. That is we model y; as a function of its last p lags y1—1, ..., Yt—p,
a constant o, and an error wu;.

Y =+ ¢1Yi—1 + Payp—2 + ...+ Ppyi—p + Uy

Usefulness of the Model

o Forecasting,
e Stochastic properties of the data,

e Modelling time series.

Stationary AR(1)

We will studies the properties of the stationary AR(1) process,
Yo =+ oY1 +up , g ~iid (0,07)
For simplicity we omit the constant a, but it could be included. When a = 0 the model above is,

Yt = PYr—1 +
Using the fact that y;—; = ¢ys—;—1 + us—; and backward substitution, the AR(1) model can be represented
as,
Yt = QYr—1 + w
Yt—1 = PYt—2 + ur—1
Ye = ¢(dyr—2 + up—1) + uy
= ¢2'yt—2 + pup_1 +uy
= ¢*(dy—3 + w—2) + dup—1 +
= Py_s + P u—o + dup_1 +

h—1
Yt = d)hytfh + Z ¢iut7i
i=0
t—1

v =0y + Y du

i=0
Requirements for Stationarity
For an AR(1) to be stationary we require,

(1) [o] <1,

(2) E [yO] =0, Var (yO) = 1(_T¢2-

16



Expectation

t—1

Ely] = ¢'E [yo] + Z G E[u_;] =0

Variance
=1
Var (y;) = ¢ Var (yo) + Var | Y _ d'ur—
=0
t—1 t—2 t—1
= ¢?" Var (yo) + Z ¢* Var (u_j) + 2 Z Z Cov (up—j, ug—;)
=0 §=0i=j+1
0_2 t—1
2t 2 2j
=¢ <1_¢2) + o Z¢J
7=0
2 2t
2t g 2 (10
- (7)o (%)
-5 p
Covariance
h-1
Cov (ye, yr-n) = Cov | ¢"vrn + > &ur—j, v
§j=0

h—1
= ¢" Cov (ys—n,yi—n) + Cov Z T ui—j, Yion
i=0
=Cov(ut+dus—1+...4+¢"1up_p41)=0

= ¢h Var (yt_h, yt—h)

_ h o’
‘¢<1—w)

In case it isn’t obvious why Cov (us+¢us_1+. . .+ " Luy_p 1) = 0, this is because y;_j, is only correlated with
error terms that come temporally before it, that is before period (¢t — h). In our case here we are considering
error terms from period ¢t — h + 1 to period ¢, and notice that both of these periods are temporally after
t — h, hence there is no covariances between y;_j; and these error terms.

Autocorrelation Function

Cov (?Jn yt—h)
Var (y;)

(%)

(%)

="

Corr (yt, yt—h) =

17



Converting AR(1) to MA

Yt = QYr—1 + w
Yt — QYr—1 =
(1—oL)yr =
1
Yt = 1 ¢Lut
1
Where = (1+¢L+¢*L*>+¢°L> +...)
1—¢L
y=>Y &Ly
j=0

o0
Yt = Z P up—j
j=0

Wold Decomposition

Recall the theorem,
Theorem (The Wold Decomposition)

If z; is stationary and non-deterministic, then
oo
Ty = Z \I'jut_j + 2y = \I/(L)ut + 24
j=0
Where,

e Wo=1land } 72 ¥% < oo

o uy is wn(0,0?%)

e z; is deterministic

o Cov(ug,z:) =0 for all s and ¢

o U, and u; are unique

In the case of the stationary AR(1) process (with no constant) the Wold Decomposition is

oo
Y = Z ¢ up—;j
=0

Which is also the same as the MA representation.

18



ARMA ((p,q)

Yo = O1Ye—1 + P2Yi—2+ ... F OpYi—p+ _a Fur+O1upq +boup_o+ ...+ 0qui—q

AR(p) constant MA(q)

Lag Polynomials
We can write an ARMA(p,q) using lag polynomials as,

Yt — P1Yt—1 — P2Yt—2 — « . — Pplt—p = @ + Ut + Orus—1 + O2us—o + ... + Ous_g
(1—¢1L—¢ol® — ... —¢pLP) yp = a+ (1 + 61 L+ L% + ...+ 0,L9) uy
®p(L)y = o+ Og(L)uy

Where we define ®,(L) = (1 — ¢1L — ¢poL? — ... — ¢, LP) and O4(L) = (14 61L + 62L* + ...+ 0,L7).

MA Representation

Must check for stationarity of the polynomial we are going to invert, in this case ®,(L), before trying to
invert it. This is done by checking that the roots of the polynomial ®,(L) are outside of the unit circle.

ye ={2p(L)} " a+{2,(L)} " Oy (L)us
=apmA+ {(PP(L)}71 @q(L)Ut
Where we know that,

_ 14+ 6,L+0,L%+...+6,L7
O, (L)Y 1O, (L) = = L L2 L3+ ...
{0p(L)} Oq(L) Ty Ry S —— T + 1L+ oL + P3L” +

The apra term is just a constant, since the Lag operator passes through constants,

1

-1 . «
{@p(L)} o= T = b LP

Tl —a—... — oy

= aMA

Wold Decomposition

Recalling the theorem from above, for a stationary and non-deterministic y;, then

0
Yy = Z \Iljut_j + 2z = \I/(L)ut + 2z
7=0

In the ARMA(p,q) case, the Wold Decomposition is,

ye = {2p(L)} " Og(L)u +{@p(L)}

Which is exactly the MA representation.

19



AR Representation

Must check for stationarity of the polynomial we are going to invert, in this case ©,qL), before trying
to invert it. This is done by checking that the roots of the polynomial ©,(L) are outside of the unit circle.
Note, however, that even if this MA polynomial is non-invertible we can find an equivalent and invertible
MA polynomial since it is finite.

{@q(L)}il (I)p(L)yt - {@q(L)}il Q= U
{Gq(L)}_l (I)p(L)yt — QAR = Ut
Where we know that,

_ 1— ¢ L— L2 — ... — ¢,LP
{0,(L)} " @, (L) = 1_“211L_Z§L2_ _Z’”Lq =14TL+ToL?+T3L% + ...
=4,

The aar term is just a constant, since the Lag operator passes through constants

1

N o= a
IS S 7 £ By

T 1-0,—0,—...— 0,

= QAR

Autocorrelation Function
Consider a stationary ARMA(1,1), that is where |¢| < 1, |8] <1, ¢ # 0,

X = Qxp_1 + up — Qup—q with uy ~ iid(0, 02)
Using lag polynomials this can be rewritten as,

Ty — QT = up — Ouy—q

1-0L
Ty = lf(bLut
1

Recall that,

=1+ L+ F>L% + $3L> + ...
s +dL 4+ ¢*L* + ¢°L° +

Hence we can write the ARMA(1,1) as,
1

1—oL™"
=1 —0L)(1+ oL+ d*L* + .. )u,
=(1+¢L+¢*L* +...

— 0L — 0pL? — 0°L3 + .. )u,
=(1+¢L— 0L+ ¢*L? — 0pL* + .. )uy
=u+ (¢ —up—1 + (¢ — O)dpur—o + . ..

e =us + (¢ —0) Zqﬁj_lut,j

Jj=1

This form above will be useful in showing the autocovariance function.
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The autocovariance function is found starting from,
Ty = Pxp—1 + up — Oupq
Then multiplying through by z;_; and taking expectations,

BT p = QT 1Tp—p + ULy — QU174 p,
E(zixi_p) = OF [xi—124—p) + E [wpxi—p] — OF [up—12—p)
Given that u; ~ iid(0, 0?), we know from the MA form of the ARMA(1,1) that E(z;) = 0,

o0

Elzy) = Eluw] + (¢ —0)Y ¢/ 'Elui_;] =0

Jj=1

This implies that the autocovariance which usually is given by v, (h) = E[xixs—p] — E[z) Elx:i—p] is given by
vz (h) = E[xixi—p] instead. Therefore,

Ye(h) = ¢va(h — 1) + E [upxe—p] — OF [up— 124 p)

And so,
h=0:79(0) = ¢7:(1) + E[wzs] — OF [up—12¢]
h=1:v(1)= ¢7x(0) + Eupwi—1] — O0F [ug—174-1]
h>2:v.(h)=¢v.(h— 1)+ E [uswi—p] — OF [us—12:—p]

Which gives, using the fact that x; = ut+(¢—9) Z]oil ¢ uy_jand 2y —1 = ug—1+(p—0) Z;il T g

from earlier,

h=0:7(0) = ¢7(1) + E [wpz,] — OF [uy—124]

= 0% ()+ B |ui +(6—0)Y ¢ 'uju | —0F

Jj=1

w1 + (¢ —0) Z ¢j_1utjut1]

Jj=1

’YI(O) = ¢’V:v(1) + o’ — 9(¢ - 9)02
h=1:7(1)=¢72(0) + E[wzi-1] — OF [ug—12¢-1]

UtUt— 1+¢ 92 utljut —0F

= ¢7.(0) + E U1 Ui—1 + (¢ — 92 utljut 1]

Vx(l) = ¢’V:v(0) +0-— 902

h>2:9:(h) = ¢y (h—1)+ E[ugxi—p] — OF [ug—_1¢—p]
’yx(h) ¢’Yw(h - 1)

Giving the autocorrelation function,

1 h=0
palh) = { GO0 =1

dpolh—1) h=2

21



ARDL(p,r)

Yt = PYe—1+Q2yr—2+ .+ OpUr—pt+ @ F VT +NTe—1 YT+ &
~— ~—

AR(p) constant DL(r) error

Static Model

Yt = P+ YTt + €
We call this model static since all parameters are contemporaneous.
If e, iid, E e | 4, 2¢-1,...] =0, and Var (g, | @4, 241, -) = 02 then we can use standard inference.

But if &; is temporally dependent (depends on their past values - hence are not iid) then while estimator is
still consistent, variance gets messy,

We can either:

(1) Correct for Temporal Dependence,

(2) Model it (Dynamic Model).

Dynamic Model

Yo =1+ O1Ye—1 + PaYr—2+ ... F OpYs—p + V0Tt F V1Tp—1 F+ .. F VT FEt
Often adding just one lag is enough for the errors to now be iid ( &; iid). If this is the case and if it is also
the case that E [g; | 4, 2¢_1,...] = 0and Var (g; | x¢,2_1,...) = 02 then we get standard inference.

Note that although the same term ¢; is used in these two models it is capturing different errors.

Lag Form

A=mL— .. =Py =p+ (Bo+ L+ -+ B L)z, + &
Cp(L)ys = p+ Br(L)xy + &4

Stablility: The ARDL model is stable iff the roots of Cp(L) are outside of the unit circle, and hence C,(L)
is invertible.

B,(L)
= Dy (L
e, ~ =W
is convergent if the model is stable.
DL Representation
K B, (L) 1
"Tom am™ T om

Yyt = a + Doo(L)xs + uy

o0
Y= a+ Z(ijt_j + uy
=0

Note that the new error term u; = % is autocorrelated.

S T VR :
Also the constant o = o)~ oo 8 finite.
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ECM Representation

Ay, = (v = 1) (ye—1 — Ozy—1 — 7) + Az + &4

Example: ARDL(1,1)

Yt = p+nYi—1 + Bort + B1xi—1 + €t
Yo — Ye—1 = i+ (71 — 1) ye—1 + Poxs + Brai—1 + &
Aye = p+ (1 = 1) ye—1 + Boxe — Bori—1 + Poxs—1 + frai—1 + &
Ayy = p+ (1 — 1) ye—1 + BolAxy + (Bo + B1) w1 + &4

Ayt = (’71 - 1) Yt—1 + MZ’tl + ﬁ + ﬂoA!L‘t +e€

The LR expectation of this given that y; and z; are stationary must be that:

E [yt—l —O0xi_1 — T} =0
or

Elyi1 —0xi 4] =17
Example: ARDL(2,2)

ECM Form

Yt = NYt—1 + VoYi—2 + Boxs + Br1xi—1 + Poxi—2 + Uy
Y — Ye—1 = (M — 1) ye—1 + Y22 + Boxs — Pori—1 + B12i—1 + Boxi—1 + Poi—2 + uy
Ay = (m1 — 1) ye—1 + (B1 + Bo) Te—1 + YV2Yr—2 + BoAxy + Poxi—o + uy
Bo + B
Ay; = (1 — 1) |ye—1 + (Bo+ 51)

1y Li-1

+ Yoyi—2 + BoAzy + Boxi—o + Uy
(11 —1)

Assume y(t) and z(t) are stationary processes and let E[z(t)] = p. Given that E[x;] = p and Eu;] = 0, and
the fact that x; and y; are stationary, then it must be the case that,

E[Ay)=E[Az]) =0and E[y;—;] = Fly] and E [z;_;] = E [z] for all ¢

Bl8u] = (1 = 1) | Blyer] + B B o] 4 aB ool + B 1A + paB for-a] + ]

0=(n1—1) [E [ye] + MM} + 72 E [ye] + o(0) + Bap + (0)

0=(y1—1)E[y] + (Bo+ B1) p+ 72 E [ys] + B2"
Ely,) = —(Bo+ B+ B2)  (Bo+ B+ B
] =

rrm—1 ' A "
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Multipliers

Recall for this that we are considering an ARDL(p,r),

__r B@ 1
"ECm T o,mt T o
_ K 1
=G,@ TPt Eme
Where,
Cp(L)y=1—mL—..—~,L*P

B’I’(L) :ﬁO""ﬁlL"" +/BTLT

Doo(L) = 617 =do+ 0L+ 6,L% + ...
=0
And further recall that,
Ag(L) = 1+ oL+ aLl® + ...+ ayL9)
Ag(0) = (14 a10 4+ a20® + ... + a07) = 1
AD)=0+a1+a+...+ o)

Impact (Contemporaneous) Multiplier

‘How does today’s z; influence today’s y;’

_ Oy B.(0)

mo = —
5SCt

J-th lag Multiplier

‘How does x; j days ago influence today’s y;’

9y
my =< = 8; # B

(Sl't,j

Total/Long-run Multiplier

‘Total effect’

Myiotal = ij = D(l) = 25] = grgii
=0 j p

Jj=0
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Transmission Effects

(Assume that §; > 0)

Mean Lag

‘How concentrated (or diluted) the effect of z; on y; is’.

Earlier lags get a higher weight (remember ¢ — 4 is earlier than t).

(?i 7] ! / ’
Meanlag = ZJ;OOJ i _D'(1) _B'(1) C'(1)

>—00; D) B(1) C(1)
Where

Median Lag

‘The time when y; has accumulated 50% of the total effect’
5
Medianlag = min @ >0.5

If you add dp, 61,2 and get an answer > 0.5 then the median is 2

25



Asymptotics & Estimation: AR(p)

Here we will consider a stationary AR(1), that is a model,
Yt = QY1 + Uy

Where |¢| < 1, uy ~ id(0,02), E[u}] = g < 0o, Elyo] = 0, Var(yg) = % and where yq is independent of
all Ut.

All this reasoning should extend to the AR(p).

Asymptotics: Sample Mean

1 T 1 T oo ,
Yy —f;ytzfzzwutﬂ‘

t=1 i=1

Consistency

We will use the Covariance-Stationary LLN in this case, which requires that we check that the autocovariances
are absolutely summable.

|h]

Yh=¢ 1_u¢2

ZI%I—

¢\h|

Z|¢ =

2
¢Q|Z|¢|h - |(1+|¢|1+|¢|2 )

2
o 1

TH-eiog

Having shown that they are, hence we can use the Covariance-Stationary LLN,

T
Z Ely] =0

H \

Asymptotic Normality

Here we will use the Wold Decomposition CLT on the Wold Decomposition of the AR(1),

= Z ¢iut7i

=0

Given we have already assumed u; ~ iid(0,02), we just need to check the condition that the coefficients on
the error term are absolutely summable, that is,

o0
D il < o0
i=0
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In our case,

D bl =167 =14 (¢l + (6% + 67| + ...

i=0 i=0
1 <
= 00
1— 19|
Hence the Wold Decomposition CLT applies and so,
VT (i — 1) 2 N(o, 3 %>
h=—o00
Where p = 0 and where Y 72 7, = 02¥?(1). Recall that in this case,
1
V(L) =
1
U(l)=——
W=7
Therefore,
0o 1 2
20201 — 2
Z =0,V (1) =0, (1_¢)

h=—o00

Using all of this and the Wold Decomposition CLT,

Estimation: OLS

We estimate ¢ in the AR(1) model by OLS,

T T
$T = argmin Zuf = argmin Z (yt - d)ytfl)
t=1 t=1

Giving the FOC,
T
0= —22%71(% - ¢Tyt71)

t=1

T T
0= Zyt—lyt —¢r ny_1
t=1 t=1

Hence,
T T
-~ Dot Yi—1Yt _ D1 Ye—1 (Pys—1 + uy)

T
or = + thl Yr—1Ut
T T

Dt (T D1 Yi oy

T
D1 yi

=0¢
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Asymptotics: OLS Estimator

Consistency

1T
T thl Yt—1Ut
17
Ty via
Consider the numerator to start, and notice that, where Z;_; is the information set we have at t — 1,

Elyi—1us | Zi—1]) = ys—1 Flus | Zt—1] = 0. We have a Martingale Difference Series (mds), so we will apply the
mds LLN.

br — ¢ =

We just need to check condition (b) of mds LLN for p = 1 and my = ys—q1uy,

lim maxE|yt,1ut|2 = lim max F [yt,lzutz]
T—o0 t<T TS00 t<T
= 1li =E[y? \E(u?| T
A max = By B (| Ti-a)]
2 4

o 9 o

1o’ T1og =™

The condition holds, so,
T
T Zyt—lut 0

t=1

Now considering the denominator,

T
TNy =T (+yi 4. +vr ) =T (W +ui + .. +yi 1 +vF —v7)
t=1T

T
=T 7+ T (5 —v7)
t=1

And we can work out, simply by squaring the AR(1) model,

{%}2 = {¢yt—1 +Ut}2
yi = *yi 1+ ui + 20y 1us

Now substituting this in,

T T
TN yp =T (6°07 1 +uf + 26y 1w) + T (v — v7)
t=1 t=1
T

T
= 27! Z Y2+ T Z (u? + 2¢yt—1ut) +77! (yS - y%)
t=1 t=1
T T

T T
T wia =T Y oyt =Ty ui + 20771 ) Jyeaue + 17 (45 — y7)
=1 =1 t=1 t=1

T T T
Q=T g =T +20T7 > yaw + T (45 — v7)
t=1 t=1 t=1

T T T
1
T = [T‘l S 2 4267 g+ T (18— 12)
t=1 t=1 t=1
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Now analysising each term,

T
713 u? %5 o? (iid LLN)
t=1
T
71 Zyt,lut L0 (mds LLN)
t=1
T (Y5 — y3) = 0

Hence the denominator,

T 2
Tt Y2 i S —
; T -¢?)
So overall,
Tt Zthl Yi—1Ut P 0

br =+

Asymptotic Normality

n T-1/2 2321 Yt—1Ut
v (¢T - ¢> Tt ZtT:1 Y7

Starting with the denominator, from the argument above,

T 2

_ P o
T 1Zyt271—> 1_¢2

Then the numerator,
mds CLT applies (argumentation is tedious)
;I

D Sy > N(0,E [y u?]) = N (0,
t=1

And so overall,

~ T—1/2 Ti i N (07 1(_f¢2)
VE(or - 0) = Tt £, (o, B
T3 1 Yia T—¢2
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Asymptotics, Estimation & Selection: ARMA (p,q)

Asymptotics: Sample Mean
Consistency

Use Covariance-Stationary LLN for a stationary ARMA model.

Asymptotic Normality

Use the Wold Decomposition (the MA representation).

Estimation
We get our estimates gg, 5, and o, in the ARMA(1,1) model from the Yule-Walker equations,

h=0: 796(0) = ¢7T(1) + 02 - 9(¢ - 9)02
h=1:7(1) = ¢v.(0) + 0 — o*
B> 2 yu(h) = drlh— 1)

The ARMA(p,q) is estimated by ML.

Selection

How many lags should we use in the model? Having many lags implies a more fleixble model with less bias,
but fewer lags means a lower variance. . .

(1) Stepwise Testing Down Procedure

e Start with some p lags
(1) Perform a t-test Hy : ¢ =0

(2) If we accept Hy | ¢, = 0 then repeat p — 1 lags until we reject Hy (as long as stationary and
weakly dependent ¢; is asymptotically normal).

e Problem: (;Aﬁl could be significant by chance.

(2) Information Criteria

e Where:

— There are k alternative models, M, ..., M 7 Wherek =1,..., k represent the number of parameters
in the model,

0}, is the variance of the residuals of model My,

T is the sample size,

— P(T) is a penalty for including too many lags.
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Asymptotics & Estimation: ARDL(p,r)

Estimation

With iid Errors

Ye = b+ Boxs + Bras_1 +ays_1 + ey
Where ¢; ~ ttd N (0, 02) , xy is stationary AR(1) and ¢; of all past x;, x4—1, Tt—2,...and past yr_1, Yt—2,. ..

Use OLS to estimate, .
B—pB=(X"X)""(X)

With Autocorrelated Errors

Consider ARDL (1,0)
Y = Poe + M1yi—1 T &

With |y1| < 1 and where ¢, is autocorrelated.

Stability allows us to write,
_ Bo T + €t
1-— ")/1L t 1-— ’YlL

Yt
Mean independence of ; and regressors fails

E(epyi—1) =E { thq + €tEtl}

L 1— L
ﬂo Et—1
=F _ FEleg———
{Ql—vlL‘”‘“+ 1oL
€
=0+ F l:é‘tl t’ylL:| =0+ F [Et (5t—1 +’715t—2+7125t—3+--~)} #0
-N

If the errors are AR(1), that is if &; is autocorrelated such that e, = ¢e;_1 + u; where u; ~ idd(0,02), then
we can solve this by adding more lags.

Here is our ARDL(1,0) model,
Y = Bre + 11— + &

Using the AR(1) autocorrelated error and by adding the lags y;—o and @1,
Et = ¢Et_1 —+ Ut 5, U ~ zdd(O,Ui)
U =&t — Qgt—1 , €t =Yt — BTt — NYt—1 5 Et—1 = Yt—1 — BTt—1 — NYt—2
U = Y¢ — Bre — NYr—1 — ¢Ye—1 — Bri—1 — NY—2]

Which means finally,
Y = (11 + D) Yi—1 — NYt—2 + By — Bri1 +uy

with u; ~ iid(0,02).

If, however, the errors are MA(1) autocorrelated, that is if e, = u; + ¢us—1 , g ~ 4id(0,02) then no such
trick can be used. Instead we can use IVs.

Asymptotics

Study asymptotics with mds LLN and CLT.
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Time Trends

yr = a+ 0t + up uth’id(O,ai)

Stochastic Properties

Expectation
Ely| =Ea+dt+u] =a+dt
Variance
Var (yr) = B [{y: = B (9)}’| = E [uf] = o
Covariance
Cov (e, yi-n) = E[{ye — E(ye)} {ve—n — E (Ye—n)}] = E fugug_p] =0
Correlation

cov (Y, Ye—h
Corr (y¢, ye—n) = (e, Yi—h)

- Var () y/var (yn)

OLS Estimation

Y1 11
y2 ]. 2 o
Y = XB+ U where, Y = . , X = . , B —< >7 U =
(Tx1) : (Tx2) Do (2x1) ) (Tx1)
Yt 1T

We can just use the usual OLS matrix estimator,

Br
(2x1)

(X'X)' XY

And in our case,

~ T T -1 T
5 ar —a il Dt Doyl
Br—B)=|( = - t=1 t=1 t=1
(Br—5) <6T—5> ( T Z;t2> (sz)
Where,

T T(T+1) ]

T(T+1) T(T+1)2(2T+1)
2 6
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Asymptotic Distribution

Need to first stabilise the denominator: (X’X)™"
(T 0
=0 T

_ o 7T 7-2TTED
’YTl(XIX) 1’7T1 = (T_QT(T+1) T 3T(T+1)(2T+1) ‘>(

NI =
SN

N———
i
a)

2

Where @ is invertible.

Now we need v ’s to cancel out, this is how we do it,
v (Br—B) = {7 (X'X)5;'} vpt (X'0)
Hence we just need to consider,
1 -1 T
T: 0 DU
X'U) = =1 =

T
_ % Zt:l Ut
- T
ﬁ Zt:l %ut

T-% Zthl uy +0 Zthl tug | _
0 Z?:l u+T73 Z;F:1 tu

T
T 2T 'Y, tu

Row 1:
Given that u; ~ iid (0, 02) we can use the iid CLT so that,

(&) S N (0,0%)

t=1

t 2 5
Var <Tut> = ﬁa

hence we are dealing with heteroskedastic errors, which means we can’t use the iid CLT but we can show
this to be an mds instead,

Row 2:

t t
E [Tut |It1:| = TE[ut |It,1] =0

Hence we just need to check conditions (i) and (¢4)" for the mds CLT, which hold (I'm not going to show it).
For this row we get out as our answer,

i =N 7)

’ﬂ \

Overall then,

v (X'U) 25 N (0, 02Q)

NOT SURE IF THIS IS CORRECT??
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Unit Roots

Hypothesis

We can test if the model,
Yt = Pyr—1 + wy

Has a unit root with the null hypothesis that it has a unit root against the alternative hypothesis that it is
stationary,

Hy:¢=1
Hy:9p<1
Or equivalently,
Ay =0y 1 +u ford=¢—1
Hy:60=0
Hi:0<0

Note that to test for stationarity in the alternative we really need to test for |¢| < 1 which implies —1 < ¢ < 1
and therefore —2 < 6 < 0.

Autocorrelation Functions of Random Walks

ACF

RW

Stationary

Figure 1: ACF for Random Walks vs Stationary AR(1)

Stationary trend reverts back to mean therefore ACF drops off quickly. Unit roots do not revert so this
doesn’t happen in the same way.

Why a Random Walk is called a Unit Root: Lag Form

Random walk with drift: y, = p 4+ ys—1 + w4

Lag Polynomial and its roots:
(1-L)yr=p+u
(1-L)=0
L=1

Given non-stationary then roots of lag polynomial are on the unit circle, hence we have a ‘unit root’.



AR Representation

Yo = p+ 1 + g with uy ~iid (0,07) and yo =0

MA Representation

Yt = B+ Yr—1 + U
Yo =+ (L + Yoo + w—1) + uy
Y =20+ (0 + yr—3 + us—2) + up—1 + up

Ye=hp+yen+upr1 +Fuppe o U1 Uy
h—1

yr = hp+ Z Ug—j
=0

Letting h =t

-1

Yo =t + Z Ug—j
=0

Yye=tp+u +up—1+ ...+ U2 + Ut 41
ye=tu+ur+ug—1+...Fus+u

¢
Y =tp+ Zuj
=1

Order of Integration

yr ~ I(1) : integrated of order 1 - difference once for stationarity.
Ay ~ I(0) : stationary.
That is the first difference of an AR(1) random walk is stationary: y; — yr—1 = Ay = p + uy.
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Expectation

Variance

Covariance

Method 1

/ / /!
Var (y;) = Var | ut + Z uj | = Var Z uj | = ZVar (uj) = o,°t
j=1 j=1

j=1
Var (y;) = 0,2t

h—1

Cov (ye,ye—n) = Cov | ph+ grn + Y wr—j,yr—n
=0

Cov (yt; yt—n) = 0+ var (ye—p) + 0

Cov (ye, ye—n) = (t = h)oy,

To better explain the jump from the first to the second line,

Where the first covariance is zero because ph is a constant, and the last covariance is zero because {ut, j}

h—1

Cov (ye, ye—n) = Cov (hy,ye—n) + Cov (ye—n,ye—n) + Cov | D wej,yen

=0

h—1
Jj=0

is temporally after period t — h, and y; (or in this case y;—p) is only affected by u;’s that come before it.

Method 2

Cov (yt, ys) =F [(yt - Eyt) (ys - Eys)]

t

yt—Eyt:yt—ut:Zuj
=1

t s
Cov (y,ys) =B | [ D uy (Z%)
j=1 i=1

E [uju;] # 0 for i = j, hence
t s

Z Z E [uju;] = 0,% min{s, t}

j=11i=1
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Unit Roots (Nonstandard) Asymptotics & Estimation

For this section we will consider a Random Walk without drift.

Yt = Ys—1 + uy where yo = 0

t
Yt = E Uj
j=1

Asymptotics: Sample Mean

Consistency

The sample has the expectation,

Hence to show consistency we just need to show by MSC that the variance tends to zero in the limit,

T
1
Var (y:) = Var ( Zyt> = ﬁ\/ar (Z yt> =
=1

Where the first term,

ZVar m +22 Z Cov (yt,Ys)

t=1 s=t+1

j=1 t=1 j=1
T
1 , 02 o2 T(T+1) (T'+1)
= QZtJ“_TZt:TQ 2 = 2T
t=1 t=1

And the second term,

T-1 T
2
T2 Z Z Cov (yt,ys) = 72 Z Z o2 min{s,t} wheres=1t+1= s >t hence,

t=1 s=t+1 t=1 s=t+1

!

Z 1 =T, but we have t less numbers than that,

hence Z 1=(T-1)

s=t+1

9,2 T-1
t
Tz 2 T

T T
TZt — Zﬁ]
t=1 t=1
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We can go from T — 1 to T since when ¢t = T the sum is 0 anyway

ED 9D WMVEAESE ) WIS Wi B

202 { pTT ) T(T+1)ET+1)

t=1 s=t+1 2 6
_ 2 (T+1)(T71)
v 3T
So overall,
Var (i) = o2 (T2—;1) +o? (T + 13)7(1T 1)

_ 2 {3(T+ 1) N 2T+ 1)(T — 1)]
¢ 67T 6T
2 (T+1)

=%ugr (3+2(T —1))

L (T+1)(2T +1)

o 67

Which we can approximate when T gets large as,
_ 2T
Var (yt) ~ O—ug
So the variance explodes as T' gets large, implying that the sample mean is not consistent.

Asymptotic Normality

If we assume that the errors are normally distributed, then using the fact that a linear combination
of normally distributed RVs is normally distributed,

If we instead make the weaker assumption that the errors are iid but not normal

ug ~ i.i.d (0, 02)

TWZZ% —>N< 3) uN(O,é) 2 5.D;

t=1 j=1

In this case it can also be shown that,

T
1 D
72 DU — ouDe

Estimation: OLS

= ¢ys_1 + uy with uy ~ iid (0,02) and F [uﬂ =y < 0
OLS Estimator is given by,

T
$T _ Zf 1Ye-1Ye Zt:l Ye—1 (Pye—1 + up) — b+ Zt 1 Yt—1Ut
T
Zt:l ytfl D=1 thfl Zt 1yt 1
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Asymptotics: OLS Estimator
Consistency

Consistency of the OLS estimator can be shown in much the same way as it was for the stationary AR(1).
The using the mds LLN it can be shown for the numerator that,

T

_ P
T E Yi—1uz — 0
=1

While it can be shown for the denominator that,

So overall the estimator is consistent.

Asymptotic Distribution: Dicky-Fuller Distribution

Recall that in the stationary case when |¢| < 1,
VT (61— 9) = N(0, 1-¢%)

In the Unit Root case ¢ =1,
Zt 1 Ye—1Ut
or — ¢ = =L
Zt 1Y
Zt=1 Yt—1Ut

T
>t yt271

We can’t use the usual normalisation T"/2 because Tl/z((,zAST -1 N 0, so instead we use 17" and show that,

¢r—1=

T(¢r —1) 25 DFoLs
Taking first the denominator, recall from before that, although we didn’t show why, it can be shown that,
1« D
T2 Z Yi—1 — 02Ds
=1
Considering then the numerator,

1
Ui = Y1 w2y = Y uy = 3 [y* — ye1? — u?]

Then,
T T T T
1 1 2 111 2 1 2
*Zyt—%:*z ot —wl] =5 Z 2 =Y )_*Zut
r t=1 2T t=1 2 t:1 T t=1
For the first term of this new term we can show that,
T
> W —via) (?ﬁ++y§+m+y%— % —yf—yS—---—y%1>=y%
t=1 =0 by assumption
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Hence considering again the whole numerator,

T
1, 1 o] 1
TyT_th_;ut]_2

: (o) -1 5] =4 0ty )=t

So overall,
T S yeu p (XE—1)
o T
T=237 1Y 2D,

T (ggT — 1) = = DFoprs
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Unit Roots: Testing
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Spurious Regression & Cointegration
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